Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from torchvision import transforms, models | |
from PIL import Image | |
import requests | |
from torchvision.models import vgg19 | |
import gradio as gr | |
# Define preprocessing | |
preprocess = transforms.Compose([ | |
transforms.Resize((224, 224)), # Resize images to 224x224 | |
transforms.ToTensor(), # Convert images to tensor | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Normalize using ImageNet stats | |
]) | |
# Load trained model | |
model = models.vgg19(weights='DEFAULT') | |
# Adjust the final fully connected layer for binary classification | |
num_ftrs = model.classifier[-1].in_features # Get the number of input features from the last layer | |
model.classifier[-1] = nn.Linear(num_ftrs, 2) # Replace with a new linear layer for binary classification | |
# Load the saved weights into the model | |
model.load_state_dict(torch.load('rice_plant_classification.pth', weights_only=True)) # Ensure this file exists | |
model.eval() | |
# Define class labels | |
class_to_label = {0: 'Healthy', 1: 'Unhealthy'} | |
# Inference function | |
def predict(image): | |
# Preprocess the image | |
img = Image.fromarray(image) | |
img = preprocess(img).unsqueeze(0) # Add batch dimension | |
# Perform inference | |
with torch.no_grad(): | |
output = model(img) | |
probabilities = torch.softmax(output, dim=1) | |
predicted_class = torch.argmax(probabilities, 1).item() | |
confidence = probabilities[0][predicted_class].item() | |
# Return the class label and confidence | |
return class_to_label[predicted_class], f'{confidence * 100:.2f}%' | |
example_images = ["healthy.jpg", "unhealthy.jpg"] | |
# Create Gradio interface | |
interface = gr.Interface(fn=predict, | |
inputs="image", | |
outputs=[gr.Textbox(label="Prediction"), gr.Textbox(label="Confidence")], | |
title="Healthy vs Unhealthy Rice Plant Classifier", | |
description="Upload a rice plant image to classify either it is healthy or unhealthy.", | |
examples=example_images | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch() | |