Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer | |
# load tokenizer and model, create trainer | |
model_name = "j-hartmann/emotion-english-distilroberta-base" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
trainer = Trainer(model=model) | |
# summary function - test for single gradio function interfrace | |
def bulk_function(filename): | |
# Create class for data preparation | |
class SimpleDataset: | |
def __init__(self, tokenized_texts): | |
self.tokenized_texts = tokenized_texts | |
def __len__(self): | |
return len(self.tokenized_texts["input_ids"]) | |
def __getitem__(self, idx): | |
return {k: v[idx] for k, v in self.tokenized_texts.items()} | |
# read file lines | |
with open(filename.name, "r") as f: | |
lines = f.readlines() | |
# expects unnamed:0 or index, col name -> strip both | |
lines_s = [item.split("\n")[0].split(",")[-1] for item in lines][1:] | |
# Tokenize texts and create prediction data set | |
tokenized_texts = tokenizer(lines_s,truncation=True,padding=True) | |
pred_dataset = SimpleDataset(tokenized_texts) | |
# Run predictions -> predict whole df | |
predictions = trainer.predict(pred_dataset) | |
# Transform predictions to labels | |
preds = predictions.predictions.argmax(-1) | |
labels = pd.Series(preds).map(model.config.id2label) | |
scores = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True)).max(1) | |
# scores raw | |
temp = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True)) | |
# work in progress | |
# container | |
anger = [] | |
disgust = [] | |
fear = [] | |
joy = [] | |
neutral = [] | |
sadness = [] | |
surprise = [] | |
# extract scores (as many entries as exist in pred_texts) | |
for i in range(len(lines_s)): | |
anger.append(temp[i][0]) | |
disgust.append(temp[i][1]) | |
fear.append(temp[i][2]) | |
joy.append(temp[i][3]) | |
neutral.append(temp[i][4]) | |
sadness.append(temp[i][5]) | |
surprise.append(temp[i][6]) | |
# define df | |
df = pd.DataFrame(list(zip(lines_s,preds,labels,scores, anger, disgust, fear, joy, neutral, sadness, surprise)), columns=['text','pred','label','score', 'anger', 'disgust', 'fear', 'joy', 'neutral', 'sadness', 'surprise']) | |
# save results to csv | |
YOUR_FILENAME = filename.name.split(".")[0] + "_emotion_predictions" + ".csv" # name your output file | |
df.to_csv(YOUR_FILENAME) | |
# return dataframe for space output | |
return YOUR_FILENAME | |
gr.Interface(bulk_function, [gr.inputs.File(file_count="single", type="file", label="csv", optional=False),],["file"], | |
examples=[['emotion_examples.csv'],], | |
).launch(debug=True) |