Spaces:
Sleeping
Sleeping
File size: 7,530 Bytes
77c006e deb9302 09618ca deb9302 93b5d0e deb9302 cb6b5d0 e49ad3d 9525ef8 deb9302 cb6b5d0 e49ad3d deb9302 699acb6 deb9302 cb6b5d0 e49ad3d cb6b5d0 4dcf57d cb6b5d0 09618ca cb6b5d0 09618ca 4dcf57d cb6b5d0 e49ad3d deb9302 e49ad3d 699acb6 e49ad3d deb9302 c3b2e36 deb9302 c3b2e36 deb9302 e49ad3d cb6b5d0 e49ad3d cb6b5d0 e49ad3d 8133539 c3b2e36 4dcf57d e49ad3d deb9302 e49ad3d cb6b5d0 e49ad3d deb9302 e49ad3d deb9302 e49ad3d deb9302 e49ad3d deb9302 699acb6 deb9302 699acb6 deb9302 699acb6 deb9302 699acb6 deb9302 699acb6 deb9302 699acb6 e49ad3d deb9302 77c006e e49ad3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import streamlit as st
from streamlit_webrtc import webrtc_streamer, WebRtcMode, RTCConfiguration
from typing import List
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain_community.vectorstores import FAISS
from langchain.prompts import PromptTemplate
import os
from dotenv import load_dotenv
import requests
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
import whisper
import numpy as np
import av
import time # Added import time
import queue
# Load environment variables
load_dotenv()
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
if "audio_buffer" not in st.session_state:
st.session_state.audio_buffer = queue.Queue()
if 'recording' not in st.session_state:
st.session_state.recording = False
if 'webrtc_ctx' not in st.session_state:
st.session_state.webrtc_ctx = None
# Prompt template
PROMPT_TEMPLATE = """
<s>[INST] You are a professional therapist who speaks Moroccan Arabic (Darija).
Act as a compassionate therapist and provide empathetic responses using therapeutic techniques.
Always respond in Darija unless specifically asked otherwise.
Previous conversation:
{chat_history}
User message: {question}
Context: {context}
[/INST]
"""
# Setup retry strategy
retry_strategy = Retry(
total=3,
backoff_factor=1,
status_forcelist=[429, 500, 502, 503, 504]
)
session = requests.Session()
session.mount("https://", HTTPAdapter(max_retries=retry_strategy))
# Initialize models
whisper_model = whisper.load_model("base")
llm = HuggingFaceEndpoint(
endpoint_url="https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1",
task="text-generation",
temperature=0.7,
do_sample=True,
return_full_text=False,
max_new_tokens=2048,
top_p=0.9,
repetition_penalty=1.2,
model_kwargs={
"return_text": True,
"stop": ["</s>"]
},
huggingfacehub_api_token=os.getenv("HUGGINGFACE_API_TOKEN"),
client=session
)
# Setup memory and conversation chain
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
embeddings = HuggingFaceBgeEmbeddings(
model_name="BAAI/bge-large-en"
)
vectorstore = FAISS.from_texts(
["Initial therapeutic context"],
embeddings
)
qa_prompt = PromptTemplate(
template=PROMPT_TEMPLATE,
input_variables=["context", "chat_history", "question"]
)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory,
combine_docs_chain_kwargs={"prompt": qa_prompt},
return_source_documents=False, # Changed to False
chain_type="stuff"
)
def audio_frame_callback(frame: av.AudioFrame) -> av.AudioFrame:
audio = frame.to_ndarray().flatten()
st.session_state.audio_buffer.put(audio)
return frame
def get_ai_response(user_input: str) -> str:
max_retries = 3
for attempt in range(max_retries):
try:
if not user_input or len(user_input.strip()) == 0:
return "عذراً، ما فهمتش السؤال ديالك. عاود من فضلك."
if len(user_input) > 512:
user_input = user_input[:512]
# Update response handling
response = conversation_chain({"question": user_input})
if not response:
if attempt < max_retries - 1:
time.sleep(2 ** attempt)
continue
return "عذراً، كاين مشكل. حاول مرة أخرى."
return response['answer']
except requests.exceptions.HTTPError as e:
if attempt < max_retries - 1:
time.sleep(2 ** attempt)
continue
return "عذراً، كاين مشكل مع النموذج. جرب سؤال أقصر."
except Exception as e:
st.error(f"Error: {str(e)}")
if attempt < max_retries - 1:
time.sleep(2 ** attempt)
continue
return "عذراً، كاين شي مشكل. حاول مرة أخرى."
def process_message(user_input: str) -> None:
st.session_state.messages.append({"role": "user", "content": user_input})
with st.spinner("جاري التفكير..."):
ai_response = get_ai_response(user_input)
if ai_response:
st.session_state.messages.append({"role": "assistant", "content": ai_response})
def main():
st.set_page_config(page_title="Darija AI Therapist", page_icon="🧠")
st.title("Darija AI Therapist 🧠")
st.subheader("تكلم معايا بالدارجة على اللي كيجول فبالك")
col1, col2 = st.columns([9, 1])
with col1:
user_input = st.text_input("اكتب رسالتك هنا:", key="text_input")
with col2:
if st.session_state.recording:
mic_icon = "🛑"
else:
mic_icon = "🎤"
if st.button(mic_icon):
st.session_state.recording = not st.session_state.recording
if st.session_state.recording:
st.session_state.audio_buffer = queue.Queue()
st.session_state.webrtc_ctx = webrtc_streamer(
key="speech-to-text",
mode=WebRtcMode.SENDONLY,
audio_receiver_size=256,
rtc_configuration=RTCConfiguration(
{"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}
),
media_stream_constraints={"video": False, "audio": True},
async_processing=True,
audio_frame_callback=audio_frame_callback,
)
else:
st.info("🔄 Processing audio...")
audio_frames = []
while not st.session_state.audio_buffer.empty():
audio_frames.append(st.session_state.audio_buffer.get())
if audio_frames:
audio_data = np.concatenate(audio_frames, axis=0).flatten()
# Convert to 16-bit integers
audio_data_int16 = (audio_data * 32767).astype(np.int16)
# Use Whisper to transcribe
result = whisper_model.transcribe(audio_data_int16, fp16=False)
text = result.get("text", "")
if text:
process_message(text)
else:
st.warning("ما فهمتش الصوت. حاول مرة أخرى.")
st.session_state.audio_buffer = queue.Queue()
else:
st.warning("ما تسجلش الصوت. حاول مرة أخرى.")
if st.session_state.webrtc_ctx:
st.session_state.webrtc_ctx.stop()
st.session_state.webrtc_ctx = None
if st.session_state.recording:
st.info("🎙️ Recording...")
else:
st.empty()
if user_input:
process_message(user_input)
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
if __name__ == "__main__":
main() |