n0w0f commited on
Commit
f65724a
·
1 Parent(s): 4c9761f

chore: top 20 auths, cap score

Browse files
Files changed (1) hide show
  1. app.py +25 -9
app.py CHANGED
@@ -107,7 +107,7 @@ def compute_coverage_score(eval_data):
107
  "fields_total": 0,
108
  }
109
 
110
- return max(round(total_score, 2), 100), scores
111
 
112
 
113
  def get_llm_feedback(yaml_content, api_token=None):
@@ -216,6 +216,7 @@ def load_all_eval_cards():
216
 
217
  # Compute coverage score
218
  score, score_details = compute_coverage_score(eval_data)
 
219
 
220
  # Extract key metadata
221
  eval_cards.append(
@@ -367,14 +368,29 @@ def refresh_gallery():
367
  # Convert data to pandas DataFrame for table view
368
  table_data = []
369
  for card in eval_cards:
370
- table_data.append(
371
- {
372
- "Title": card["title"],
373
- "Authors": card["authors"][5],
374
- "Creation Date": card["creation_date"],
375
- "Coverage Score": f"{card['coverage_score']}%",
376
- }
377
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378
 
379
  df = pd.DataFrame(table_data)
380
 
 
107
  "fields_total": 0,
108
  }
109
 
110
+ return min(round(total_score, 2), 100), scores
111
 
112
 
113
  def get_llm_feedback(yaml_content, api_token=None):
 
216
 
217
  # Compute coverage score
218
  score, score_details = compute_coverage_score(eval_data)
219
+ score = min(score, 100)
220
 
221
  # Extract key metadata
222
  eval_cards.append(
 
368
  # Convert data to pandas DataFrame for table view
369
  table_data = []
370
  for card in eval_cards:
371
+ author_counts = {}
372
+ for card in eval_cards:
373
+ authors = card["authors"].split(", ")
374
+ for author in authors:
375
+ if author in author_counts:
376
+ author_counts[author] += 1
377
+ else:
378
+ author_counts[author] = 1
379
+
380
+ top_authors = sorted(author_counts.items(), key=lambda x: x[1], reverse=True)[:5]
381
+ top_authors = [author for author, count in top_authors]
382
+
383
+ for card in eval_cards:
384
+ authors = card["authors"].split(", ")
385
+ filtered_authors = [author for author in authors if author in top_authors]
386
+ table_data.append(
387
+ {
388
+ "Title": card["title"],
389
+ "Authors": ", ".join(filtered_authors),
390
+ "Creation Date": card["creation_date"],
391
+ "Coverage Score": f"{card['coverage_score']}%",
392
+ }
393
+ )
394
 
395
  df = pd.DataFrame(table_data)
396