File size: 4,471 Bytes
2f1b920
cc7fb29
2f1b920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206be6c
2f1b920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe778f4
2f1b920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification, EsmForSequenceClassification
from transformers import set_seed
import torch
import torch.nn as nn
import warnings
from tqdm import tqdm
import gradio as gr

warnings.filterwarnings('ignore')
device = "cpu"
model_checkpoint1 = "facebook/esm2_t12_35M_UR50D"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint1)


class MyModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.bert1 = EsmForSequenceClassification.from_pretrained(model_checkpoint1, num_labels=512)#3000
        # for param in self.bert1.parameters():
        #     param.requires_grad = False
        self.bn1 = nn.BatchNorm1d(256)
        self.bn2 = nn.BatchNorm1d(128)
        self.bn3 = nn.BatchNorm1d(64)
        self.relu = nn.LeakyReLU()
        self.fc1 = nn.Linear(512, 256)
        self.fc2 = nn.Linear(256, 128)
        self.fc3 = nn.Linear(128, 64)
        self.output_layer = nn.Linear(64, 2)
        self.dropout = nn.Dropout(0.3)  # 0.3

    def forward(self, x):
        with torch.no_grad():
            bert_output = self.bert1(input_ids=x['input_ids'],
                                     attention_mask=x['attention_mask'])
        # output_feature = bert_output["logits"]
        # print(output_feature.size())
        # output_feature = self.bn1(self.fc1(output_feature))
        # output_feature = self.bn2(self.fc1(output_feature))
        # output_feature = self.relu(self.bn3(self.fc3(output_feature)))
        # output_feature = self.dropout(self.output_layer(output_feature))
        output_feature = self.dropout(bert_output["logits"])
        output_feature = self.dropout(self.relu(self.bn1(self.fc1(output_feature))))
        output_feature = self.dropout(self.relu(self.bn2(self.fc2(output_feature))))
        output_feature = self.dropout(self.relu(self.bn3(self.fc3(output_feature))))
        output_feature = self.dropout(self.output_layer(output_feature))
        # return torch.sigmoid(output_feature),output_feature
        return torch.softmax(output_feature, dim=1)


def AMP(test_sequences, model):
    # 保持 AMP 函数不变,只处理传入的 test_sequences 数据
    max_len = 18
    test_data = tokenizer(test_sequences, max_length=max_len, padding="max_length", truncation=True,
                          return_tensors='pt')
    model = model.to(device)
    model.eval()
    out_probability = []
    with torch.no_grad():
        predict = model(test_data)
        out_probability.extend(np.max(np.array(predict.cpu()), axis=1).tolist())
        test_argmax = np.argmax(predict.cpu(), axis=1).tolist()
    id2str = {0: "non-AMP", 1: "AMP"}
    return id2str[test_argmax[0]], out_probability[0]


def classify_sequence(sequence):
    # Check if the sequence is a valid amino acid sequence and has a length of at least 3
    valid_amino_acids = set("ACDEFGHIKLMNPQRSTVWY")
    sequence = sequence.upper()

    if all(aa in valid_amino_acids for aa in sequence) and len(sequence) >= 3:
        result, probability = AMP(sequence, model)
        return "yes" if result == "AMP" else "no"
    else:
        return "Invalid Sequence"

# 加载模型
model = MyModel()
model.load_state_dict(torch.load("best_model.pth"), strict=False)


if __name__ == "__main__":
    with gr.Blocks() as demo:
        gr.Markdown(
            """

        # Welcome to Antimicrobial Peptide Recognition Model
        This is an antimicrobial peptide recognition model derived from Diff-AMP, which is a branch of a comprehensive system integrating generation, recognition, and optimization. In this recognition model, you can simply input a sequence, and it will predict whether it is an antimicrobial peptide. Due to limited website capacity, we can only perform simple predictions. 
        If you require large-scale computations, please contact my email at [email protected]. Feel free to reach out if you have any questions or inquiries.

            """)

        # 添加示例输入和输出
        examples = [
            ["QGLFFLGAKLFYLLTLFL"],
            ["FLGLLFHGVHHVGKWIHGLIHGHH"],
            ["GLMSTLKGAATNAAVTLLNKLQCKLTGTC"]
        ]

        # 创建 Gradio 接口并应用美化样式和示例
        iface = gr.Interface(
            fn=classify_sequence,
            inputs="text",
            outputs="text",
            title="AMP Sequence Detector",
            examples=examples
        )


    demo.launch()