Upload 2 files
Browse files- app.py +95 -0
- best_model.pth +3 -0
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
from transformers import set_seed
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import warnings
|
7 |
+
from tqdm import tqdm
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
warnings.filterwarnings('ignore')
|
11 |
+
device = "cuda:0"
|
12 |
+
model_checkpoint1 = "facebook/esm2_t12_35M_UR50D"
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint1)
|
14 |
+
|
15 |
+
|
16 |
+
class MyModel(nn.Module):
|
17 |
+
def __init__(self):
|
18 |
+
super().__init__()
|
19 |
+
self.bert1 = AutoModelForSequenceClassification.from_pretrained(model_checkpoint1, num_labels=3000).cuda()#3000
|
20 |
+
# for param in self.bert1.parameters():
|
21 |
+
# param.requires_grad = False
|
22 |
+
self.bn1 = nn.BatchNorm1d(256)
|
23 |
+
self.bn2 = nn.BatchNorm1d(128)
|
24 |
+
self.bn3 = nn.BatchNorm1d(64)
|
25 |
+
self.relu = nn.LeakyReLU()
|
26 |
+
self.fc1 = nn.Linear(3000, 256)
|
27 |
+
self.fc2 = nn.Linear(256, 128)
|
28 |
+
self.fc3 = nn.Linear(128, 64)
|
29 |
+
self.output_layer = nn.Linear(64, 2)
|
30 |
+
self.dropout = nn.Dropout(0.3) # 0.3
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
with torch.no_grad():
|
34 |
+
bert_output = self.bert1(input_ids=x['input_ids'].to(device),
|
35 |
+
attention_mask=x['attention_mask'].to(device))
|
36 |
+
# output_feature = bert_output["logits"]
|
37 |
+
# print(output_feature.size())
|
38 |
+
# output_feature = self.bn1(self.fc1(output_feature))
|
39 |
+
# output_feature = self.bn2(self.fc1(output_feature))
|
40 |
+
# output_feature = self.relu(self.bn3(self.fc3(output_feature)))
|
41 |
+
# output_feature = self.dropout(self.output_layer(output_feature))
|
42 |
+
output_feature = self.dropout(bert_output["logits"])
|
43 |
+
output_feature = self.dropout(self.relu(self.bn1(self.fc1(output_feature))))
|
44 |
+
output_feature = self.dropout(self.relu(self.bn2(self.fc2(output_feature))))
|
45 |
+
output_feature = self.dropout(self.relu(self.bn3(self.fc3(output_feature))))
|
46 |
+
output_feature = self.dropout(self.output_layer(output_feature))
|
47 |
+
# return torch.sigmoid(output_feature),output_feature
|
48 |
+
return torch.softmax(output_feature, dim=1)
|
49 |
+
|
50 |
+
|
51 |
+
def AMP(test_sequences, model):
|
52 |
+
# 保持 AMP 函数不变,只处理传入的 test_sequences 数据
|
53 |
+
max_len = 18
|
54 |
+
test_data = tokenizer(test_sequences, max_length=max_len, padding="max_length", truncation=True,
|
55 |
+
return_tensors='pt')
|
56 |
+
model = model.to(device)
|
57 |
+
model.eval()
|
58 |
+
out_probability = []
|
59 |
+
with torch.no_grad():
|
60 |
+
predict = model(test_data).cuda()
|
61 |
+
out_probability.extend(np.max(np.array(predict.cpu()), axis=1).tolist())
|
62 |
+
test_argmax = np.argmax(predict.cpu(), axis=1).tolist()
|
63 |
+
id2str = {0: "non-AMP", 1: "AMP"}
|
64 |
+
return id2str[test_argmax[0]], out_probability[0]
|
65 |
+
|
66 |
+
|
67 |
+
def classify_sequence(sequence):
|
68 |
+
# Check if the sequence is a valid amino acid sequence and has a length of at least 3
|
69 |
+
valid_amino_acids = set("ACDEFGHIKLMNPQRSTVWY")
|
70 |
+
sequence = sequence.upper()
|
71 |
+
|
72 |
+
if all(aa in valid_amino_acids for aa in sequence) and len(sequence) >= 3:
|
73 |
+
result, probability = AMP(sequence, model)
|
74 |
+
return "yes" if result == "AMP" else "no"
|
75 |
+
else:
|
76 |
+
return "Invalid Sequence"
|
77 |
+
|
78 |
+
# 加载模型
|
79 |
+
model = MyModel()
|
80 |
+
model.load_state_dict(torch.load("best_model.pth"))
|
81 |
+
|
82 |
+
iface = gr.Interface(
|
83 |
+
fn=classify_sequence,
|
84 |
+
inputs=gr.inputs.Textbox(label="Enter Sequence"),
|
85 |
+
outputs=gr.outputs.Textbox(label="AMP Classification (yes/no)"),
|
86 |
+
live=True,
|
87 |
+
title="AMP Sequence Detector",
|
88 |
+
description="Enter a sequence to detect if it is an AMP (Antimicrobial Peptide) or not (yes/no)."
|
89 |
+
)
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
iface.launch()
|
93 |
+
|
94 |
+
|
95 |
+
|
best_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfea2eeaab91540cc8e05009c85b886bd0904c0e8a5621fb7bc4c3d310ca8578
|
3 |
+
size 145091125
|