jackrui commited on
Commit
5829963
·
1 Parent(s): 35e844a

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +95 -0
  2. best_model.pth +3 -0
app.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+ from transformers import set_seed
4
+ import torch
5
+ import torch.nn as nn
6
+ import warnings
7
+ from tqdm import tqdm
8
+ import gradio as gr
9
+
10
+ warnings.filterwarnings('ignore')
11
+ device = "cuda:0"
12
+ model_checkpoint1 = "facebook/esm2_t12_35M_UR50D"
13
+ tokenizer = AutoTokenizer.from_pretrained(model_checkpoint1)
14
+
15
+
16
+ class MyModel(nn.Module):
17
+ def __init__(self):
18
+ super().__init__()
19
+ self.bert1 = AutoModelForSequenceClassification.from_pretrained(model_checkpoint1, num_labels=3000).cuda()#3000
20
+ # for param in self.bert1.parameters():
21
+ # param.requires_grad = False
22
+ self.bn1 = nn.BatchNorm1d(256)
23
+ self.bn2 = nn.BatchNorm1d(128)
24
+ self.bn3 = nn.BatchNorm1d(64)
25
+ self.relu = nn.LeakyReLU()
26
+ self.fc1 = nn.Linear(3000, 256)
27
+ self.fc2 = nn.Linear(256, 128)
28
+ self.fc3 = nn.Linear(128, 64)
29
+ self.output_layer = nn.Linear(64, 2)
30
+ self.dropout = nn.Dropout(0.3) # 0.3
31
+
32
+ def forward(self, x):
33
+ with torch.no_grad():
34
+ bert_output = self.bert1(input_ids=x['input_ids'].to(device),
35
+ attention_mask=x['attention_mask'].to(device))
36
+ # output_feature = bert_output["logits"]
37
+ # print(output_feature.size())
38
+ # output_feature = self.bn1(self.fc1(output_feature))
39
+ # output_feature = self.bn2(self.fc1(output_feature))
40
+ # output_feature = self.relu(self.bn3(self.fc3(output_feature)))
41
+ # output_feature = self.dropout(self.output_layer(output_feature))
42
+ output_feature = self.dropout(bert_output["logits"])
43
+ output_feature = self.dropout(self.relu(self.bn1(self.fc1(output_feature))))
44
+ output_feature = self.dropout(self.relu(self.bn2(self.fc2(output_feature))))
45
+ output_feature = self.dropout(self.relu(self.bn3(self.fc3(output_feature))))
46
+ output_feature = self.dropout(self.output_layer(output_feature))
47
+ # return torch.sigmoid(output_feature),output_feature
48
+ return torch.softmax(output_feature, dim=1)
49
+
50
+
51
+ def AMP(test_sequences, model):
52
+ # 保持 AMP 函数不变,只处理传入的 test_sequences 数据
53
+ max_len = 18
54
+ test_data = tokenizer(test_sequences, max_length=max_len, padding="max_length", truncation=True,
55
+ return_tensors='pt')
56
+ model = model.to(device)
57
+ model.eval()
58
+ out_probability = []
59
+ with torch.no_grad():
60
+ predict = model(test_data).cuda()
61
+ out_probability.extend(np.max(np.array(predict.cpu()), axis=1).tolist())
62
+ test_argmax = np.argmax(predict.cpu(), axis=1).tolist()
63
+ id2str = {0: "non-AMP", 1: "AMP"}
64
+ return id2str[test_argmax[0]], out_probability[0]
65
+
66
+
67
+ def classify_sequence(sequence):
68
+ # Check if the sequence is a valid amino acid sequence and has a length of at least 3
69
+ valid_amino_acids = set("ACDEFGHIKLMNPQRSTVWY")
70
+ sequence = sequence.upper()
71
+
72
+ if all(aa in valid_amino_acids for aa in sequence) and len(sequence) >= 3:
73
+ result, probability = AMP(sequence, model)
74
+ return "yes" if result == "AMP" else "no"
75
+ else:
76
+ return "Invalid Sequence"
77
+
78
+ # 加载模型
79
+ model = MyModel()
80
+ model.load_state_dict(torch.load("best_model.pth"))
81
+
82
+ iface = gr.Interface(
83
+ fn=classify_sequence,
84
+ inputs=gr.inputs.Textbox(label="Enter Sequence"),
85
+ outputs=gr.outputs.Textbox(label="AMP Classification (yes/no)"),
86
+ live=True,
87
+ title="AMP Sequence Detector",
88
+ description="Enter a sequence to detect if it is an AMP (Antimicrobial Peptide) or not (yes/no)."
89
+ )
90
+
91
+ if __name__ == "__main__":
92
+ iface.launch()
93
+
94
+
95
+
best_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfea2eeaab91540cc8e05009c85b886bd0904c0e8a5621fb7bc4c3d310ca8578
3
+ size 145091125