File size: 47,229 Bytes
a928595 556ee06 8c40ab2 d60989a 1d59f84 6ff5e82 d60989a 6ff5e82 1d59f84 d60989a a928595 d60989a 7044586 6ff5e82 d60989a 7044586 6ff5e82 d60989a 6ff5e82 556ee06 d60989a c1efc08 d60989a 6ff5e82 1d59f84 53cdf96 d60989a 1d59f84 7044586 6ff5e82 1d59f84 d60989a 1d59f84 8c40ab2 6ff5e82 1d59f84 6ff5e82 1d59f84 6ff5e82 1d59f84 6ff5e82 1d59f84 6ff5e82 1d59f84 6ff5e82 1d59f84 6ff5e82 1d59f84 6ff5e82 1d59f84 8c40ab2 6ff5e82 d60989a 8c40ab2 d60989a 6ff5e82 d60989a 6ff5e82 d60989a 6ff5e82 d60989a 6ff5e82 d60989a 6ff5e82 d60989a 6ff5e82 8c40ab2 6ff5e82 d60989a 556ee06 d60989a 1d59f84 6ff5e82 1d59f84 8c40ab2 0bfe6dd 1d59f84 0bfe6dd 1d59f84 6ff5e82 1d59f84 0bfe6dd 1d59f84 c1efc08 d60989a 6ee771e 6ff5e82 1d59f84 6ff5e82 6ee771e 6ff5e82 6ee771e 8c40ab2 1d59f84 6ff5e82 1d59f84 6ff5e82 1d59f84 d60989a 1d59f84 8c40ab2 1d59f84 d60989a 1d59f84 8c40ab2 d60989a 6ff5e82 1d59f84 6ff5e82 1d59f84 6ff5e82 d60989a 1d59f84 6ff5e82 d60989a 6ff5e82 d60989a 1d59f84 6ff5e82 1d59f84 6ff5e82 d60989a 1d59f84 6ff5e82 1d59f84 d60989a 1d59f84 8c40ab2 1d59f84 6ff5e82 1d59f84 6ff5e82 1d59f84 6ff5e82 1d59f84 6ff5e82 1d59f84 6ff5e82 1d59f84 6ff5e82 1d59f84 e84a893 6ff5e82 d60989a 6ff5e82 e84a893 6ff5e82 1d59f84 d60989a 7044586 6ff5e82 1d59f84 7044586 6ff5e82 d60989a 6ff5e82 d60989a 7044586 6ff5e82 1d59f84 6ff5e82 d60989a 7044586 6ff5e82 d60989a 6ff5e82 d60989a 6ff5e82 d60989a 7044586 d60989a 6ff5e82 1d59f84 d60989a 556ee06 d60989a 556ee06 d60989a 6ff5e82 d60989a 556ee06 d60989a 1d59f84 6ff5e82 53cdf96 6ff5e82 53cdf96 6ff5e82 53cdf96 6ff5e82 1d59f84 6ff5e82 53cdf96 6ff5e82 1d59f84 53cdf96 6ff5e82 53cdf96 6ff5e82 1d59f84 6ff5e82 53cdf96 6ff5e82 53cdf96 6ff5e82 1d59f84 6ff5e82 1d59f84 6ff5e82 1d59f84 53cdf96 6ff5e82 1d59f84 6ff5e82 53cdf96 6ff5e82 53cdf96 6ff5e82 53cdf96 6ff5e82 53cdf96 6ff5e82 53cdf96 6ff5e82 1d59f84 6ff5e82 d60989a 6ff5e82 1d59f84 6ff5e82 1d59f84 d60989a 6ff5e82 d60989a 6ff5e82 d60989a 1d59f84 d60989a 1d59f84 d60989a 1d59f84 6ff5e82 1d59f84 c1efc08 1d59f84 d60989a 1d59f84 c1efc08 1d59f84 6ff5e82 1d59f84 6ff5e82 1d59f84 7044586 d60989a 7044586 6ff5e82 1d59f84 6ff5e82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 |
import streamlit as st
import pandas as pd
import numpy as np
import torch
import nltk
import os
import tempfile
import base64
from rank_bm25 import BM25Okapi
from sentence_transformers import SentenceTransformer, CrossEncoder
from nltk.tokenize import word_tokenize
import pdfplumber
import PyPDF2
from docx import Document
import csv
from datasets import load_dataset
import gc
from huggingface_hub import InferenceClient
import time
import faiss
import re
# Download NLTK resources
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
# Set page configuration
st.set_page_config(
page_title="AI Resume Screener",
page_icon="π―",
layout="wide",
initial_sidebar_state="expanded"
)
# Sidebar configuration
with st.sidebar:
st.title("βοΈ Configuration")
# Ranking weights
st.subheader("Ranking Weights")
semantic_weight = st.slider("Semantic Similarity Weight", 0.0, 1.0, 0.7, 0.1)
keyword_weight = 1.0 - semantic_weight
st.write(f"Keyword Weight: {keyword_weight:.1f}")
# Advanced options
st.subheader("Advanced Options")
top_k = st.number_input("Number of results to display", min_value=1, max_value=50, value=10, step=1)
# LLM Settings
st.subheader("LLM Settings")
use_llm_explanations = st.checkbox("Generate AI Explanations", value=True)
if use_llm_explanations:
hf_token = st.text_input("Hugging Face Token (optional)", type="password",
help="Enter your HF token for better rate limits")
st.markdown("---")
st.markdown("### π€ Advanced Pipeline")
st.markdown("- **Stage 1**: FAISS Recall (Top 50)")
st.markdown("- **Stage 2**: Cross-Encoder Re-ranking (Top 20)")
st.markdown("- **Stage 3**: BM25 Keyword Matching")
st.markdown("- **Stage 4**: LLM Intent Analysis")
st.markdown("- **Final**: Combined Scoring (Top 5)")
st.markdown("### π Models Used")
st.markdown("- **Embedding**: BAAI/bge-large-en-v1.5")
st.markdown("- **Cross-Encoder**: ms-marco-MiniLM-L6-v2")
st.markdown("- **LLM**: Qwen/Qwen3-14B")
st.markdown("### π Scoring Formula")
st.markdown("**Final Score = Cross-Encoder (0-1) + BM25 (0.1-0.2) + Intent (0-0.3)**")
# Initialize session state
if 'embedding_model' not in st.session_state:
st.session_state.embedding_model = None
if 'cross_encoder' not in st.session_state:
st.session_state.cross_encoder = None
if 'results' not in st.session_state:
st.session_state.results = []
if 'resume_texts' not in st.session_state:
st.session_state.resume_texts = []
if 'file_names' not in st.session_state:
st.session_state.file_names = []
if 'llm_client' not in st.session_state:
st.session_state.llm_client = None
if 'explanations_generated' not in st.session_state:
st.session_state.explanations_generated = False
if 'current_job_description' not in st.session_state:
st.session_state.current_job_description = ""
@st.cache_resource
def load_embedding_model():
"""Load and cache the BGE embedding model"""
try:
with st.spinner("π Loading BAAI/bge-large-en-v1.5 model..."):
model = SentenceTransformer('BAAI/bge-large-en-v1.5')
st.success("β
Embedding model loaded successfully!")
return model
except Exception as e:
st.error(f"β Error loading embedding model: {str(e)}")
return None
@st.cache_resource
def load_cross_encoder():
"""Load and cache the Cross-Encoder model"""
try:
with st.spinner("π Loading Cross-Encoder ms-marco-MiniLM-L6-v2..."):
from sentence_transformers import CrossEncoder
model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2')
st.success("β
Cross-Encoder model loaded successfully!")
return model
except Exception as e:
st.error(f"β Error loading Cross-Encoder model: {str(e)}")
return None
def initialize_llm_client(hf_token=None):
"""Initialize the LLM client for Qwen3-14B"""
try:
client = InferenceClient(
model="Qwen/Qwen3-14B",
token=hf_token if hf_token else None
)
return client
except Exception as e:
st.error(f"β Error initializing LLM client: {str(e)}")
return None
class ResumeScreener:
def __init__(self):
# Load models
self.embedding_model = load_embedding_model()
self.cross_encoder = load_cross_encoder()
self.llm_client = None
def set_llm_client(self, client):
"""Set the LLM client"""
self.llm_client = client
def extract_text_from_file(self, file_path, file_type):
"""Extract text from various file types"""
try:
if file_type == "pdf":
with open(file_path, 'rb') as file:
with pdfplumber.open(file) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text() or ""
if not text.strip():
# Fallback to PyPDF2
file.seek(0)
reader = PyPDF2.PdfReader(file)
text = ""
for page in reader.pages:
text += page.extract_text() or ""
return text
elif file_type == "docx":
doc = Document(file_path)
return " ".join([paragraph.text for paragraph in doc.paragraphs])
elif file_type == "txt":
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
elif file_type == "csv":
with open(file_path, 'r', encoding='utf-8') as file:
csv_reader = csv.reader(file)
return " ".join([" ".join(row) for row in csv_reader])
except Exception as e:
st.error(f"Error extracting text from {file_path}: {str(e)}")
return ""
def get_embedding(self, text):
"""Generate embedding for text using BGE model"""
if self.embedding_model is None:
st.error("No embedding model loaded!")
return np.zeros(1024) # BGE-large dimension
try:
# BGE models recommend adding instruction for retrieval
# For queries (job description)
if len(text) < 500: # Assuming shorter texts are queries
text = "Represent this sentence for searching relevant passages: " + text
# Truncate text to avoid memory issues
text = text[:8192] if text else ""
# Generate embedding
embedding = self.embedding_model.encode(text,
convert_to_numpy=True,
normalize_embeddings=True)
return embedding
except Exception as e:
st.error(f"Error generating embedding: {str(e)}")
return np.zeros(1024) # BGE-large dimension
def calculate_bm25_scores(self, resume_texts, job_description):
"""Calculate BM25 scores for keyword matching"""
try:
job_tokens = word_tokenize(job_description.lower())
corpus = [word_tokenize(text.lower()) for text in resume_texts if text and text.strip()]
if not corpus:
return [0.0] * len(resume_texts)
bm25 = BM25Okapi(corpus)
scores = bm25.get_scores(job_tokens)
return scores.tolist()
except Exception as e:
st.error(f"Error calculating BM25 scores: {str(e)}")
return [0.0] * len(resume_texts)
def advanced_pipeline_ranking(self, resume_texts, job_description):
"""Advanced pipeline: FAISS recall -> Cross-encoder -> BM25 -> LLM intent -> Final ranking"""
if not resume_texts:
return []
# Stage 1: FAISS Recall (Top 50)
st.write("π **Stage 1**: FAISS Recall - Finding top 50 candidates...")
top_50_indices = self.faiss_recall(resume_texts, job_description, top_k=50)
# Stage 2: Cross-Encoder Re-ranking (Top 20)
st.write("π― **Stage 2**: Cross-Encoder Re-ranking - Selecting top 20...")
top_20_results = self.cross_encoder_rerank(resume_texts, job_description, top_50_indices, top_k=20)
# Stage 3: BM25 Keyword Matching
st.write("π€ **Stage 3**: BM25 Keyword Matching...")
top_20_with_bm25 = self.add_bm25_scores(resume_texts, job_description, top_20_results)
# Stage 4: LLM Intent Analysis
st.write("π€ **Stage 4**: LLM Intent Analysis...")
top_20_with_intent = self.add_intent_scores(resume_texts, job_description, top_20_with_bm25)
# Stage 5: Final Combined Ranking (Top 5)
st.write("π **Stage 5**: Final Combined Ranking...")
final_results = self.calculate_final_scores(top_20_with_intent)
return final_results[:5] # Return top 5
def faiss_recall(self, resume_texts, job_description, top_k=50):
"""Stage 1: Use FAISS for initial recall to find top 50 resumes"""
try:
# Get job embedding
job_embedding = self.get_embedding(job_description)
# Get resume embeddings
resume_embeddings = []
progress_bar = st.progress(0)
for i, text in enumerate(resume_texts):
if text:
embedding = self.embedding_model.encode(text[:8192],
convert_to_numpy=True,
normalize_embeddings=True)
resume_embeddings.append(embedding)
else:
resume_embeddings.append(np.zeros(1024))
progress_bar.progress((i + 1) / len(resume_texts))
progress_bar.empty()
# Create FAISS index
resume_embeddings = np.array(resume_embeddings).astype('float32')
dimension = resume_embeddings.shape[1]
index = faiss.IndexFlatIP(dimension) # Inner product for cosine similarity
index.add(resume_embeddings)
# Search for top K
job_embedding = job_embedding.reshape(1, -1).astype('float32')
scores, indices = index.search(job_embedding, min(top_k, len(resume_texts)))
return indices[0].tolist()
except Exception as e:
st.error(f"Error in FAISS recall: {str(e)}")
# Fallback: return all indices
return list(range(min(top_k, len(resume_texts))))
def cross_encoder_rerank(self, resume_texts, job_description, top_50_indices, top_k=20):
"""Stage 2: Use Cross-Encoder to re-rank top 50 and select top 20"""
try:
if not self.cross_encoder:
st.error("Cross-encoder not loaded!")
return [(idx, 0.0) for idx in top_50_indices[:top_k]]
# Prepare pairs for cross-encoder
pairs = []
valid_indices = []
for idx in top_50_indices:
if idx < len(resume_texts) and resume_texts[idx]:
# Truncate texts for cross-encoder
job_snippet = job_description[:512]
resume_snippet = resume_texts[idx][:512]
pairs.append([job_snippet, resume_snippet])
valid_indices.append(idx)
if not pairs:
return [(idx, 0.0) for idx in top_50_indices[:top_k]]
# Get cross-encoder scores
progress_bar = st.progress(0)
scores = []
# Process in batches to avoid memory issues
batch_size = 8
for i in range(0, len(pairs), batch_size):
batch = pairs[i:i+batch_size]
batch_scores = self.cross_encoder.predict(batch)
scores.extend(batch_scores)
progress_bar.progress(min(1.0, (i + batch_size) / len(pairs)))
progress_bar.empty()
# Combine indices with scores and sort
indexed_scores = list(zip(valid_indices, scores))
indexed_scores.sort(key=lambda x: x[1], reverse=True)
return indexed_scores[:top_k]
except Exception as e:
st.error(f"Error in cross-encoder re-ranking: {str(e)}")
return [(idx, 0.0) for idx in top_50_indices[:top_k]]
def add_bm25_scores(self, resume_texts, job_description, top_20_results):
"""Stage 3: Add BM25 scores to top 20 resumes"""
try:
# Get texts for top 20
top_20_texts = [resume_texts[idx] for idx, _ in top_20_results]
# Calculate BM25 scores
bm25_scores = self.calculate_bm25_scores(top_20_texts, job_description)
# Normalize BM25 scores to 0.1-0.2 range
if bm25_scores and max(bm25_scores) > 0:
max_bm25 = max(bm25_scores)
min_bm25 = min(bm25_scores)
if max_bm25 > min_bm25:
normalized_bm25 = [
0.1 + 0.1 * (score - min_bm25) / (max_bm25 - min_bm25)
for score in bm25_scores
]
else:
normalized_bm25 = [0.15] * len(bm25_scores)
else:
normalized_bm25 = [0.15] * len(top_20_results)
# Combine with existing results
results_with_bm25 = []
for i, (idx, cross_score) in enumerate(top_20_results):
bm25_score = normalized_bm25[i] if i < len(normalized_bm25) else 0.15
results_with_bm25.append((idx, cross_score, bm25_score))
return results_with_bm25
except Exception as e:
st.error(f"Error adding BM25 scores: {str(e)}")
return [(idx, cross_score, 0.15) for idx, cross_score in top_20_results]
def add_intent_scores(self, resume_texts, job_description, top_20_with_bm25):
"""Stage 4: Add LLM intent analysis scores"""
try:
if not self.llm_client:
st.warning("LLM client not available. Using default intent scores.")
return [(idx, cross_score, bm25_score, 0.1) for idx, cross_score, bm25_score in top_20_with_bm25]
results_with_intent = []
progress_bar = st.progress(0)
for i, (idx, cross_score, bm25_score) in enumerate(top_20_with_bm25):
intent_score = self.analyze_intent(resume_texts[idx], job_description)
results_with_intent.append((idx, cross_score, bm25_score, intent_score))
progress_bar.progress((i + 1) / len(top_20_with_bm25))
progress_bar.empty()
return results_with_intent
except Exception as e:
st.error(f"Error adding intent scores: {str(e)}")
return [(idx, cross_score, bm25_score, 0.1) for idx, cross_score, bm25_score in top_20_with_bm25]
def analyze_intent(self, resume_text, job_description):
"""Analyze candidate's intent using LLM"""
try:
# Truncate texts
resume_snippet = resume_text[:1500] if len(resume_text) > 1500 else resume_text
job_snippet = job_description[:800] if len(job_description) > 800 else job_description
prompt = f"""You are given a job description and a candidate's resume.
Clearly answer: "Is the candidate likely seeking this job? Respond with 'Yes', 'Maybe', or 'No' and give a brief justification."
Job Description:
"""
{job_snippet}
"""
Candidate Resume:
"""
{resume_snippet}
"""
Response format:
Intent: [Yes/Maybe/No]
Reason: [Brief justification]"""
response = self.llm_client.text_generation(
prompt,
max_new_tokens=100,
temperature=0.3,
top_p=0.9,
do_sample=True
)
# Parse response
response_lower = response.lower()
if 'intent: yes' in response_lower or 'intent:yes' in response_lower:
return 0.3
elif 'intent: maybe' in response_lower or 'intent:maybe' in response_lower:
return 0.1
else:
return 0.0
except Exception as e:
st.warning(f"Error analyzing intent: {str(e)}")
return 0.1 # Default to "Maybe"
def calculate_final_scores(self, results_with_all_scores):
"""Stage 5: Calculate final combined scores"""
try:
final_results = []
for idx, cross_score, bm25_score, intent_score in results_with_all_scores:
# Normalize cross-encoder score to 0-1 range
normalized_cross = max(0, min(1, cross_score))
# Final Score = Cross-Encoder (0-1) + BM25 (0.1-0.2) + Intent (0-0.3)
final_score = normalized_cross + bm25_score + intent_score
final_results.append({
'index': idx,
'cross_encoder_score': normalized_cross,
'bm25_score': bm25_score,
'intent_score': intent_score,
'final_score': final_score
})
# Sort by final score
final_results.sort(key=lambda x: x['final_score'], reverse=True)
return final_results
except Exception as e:
st.error(f"Error calculating final scores: {str(e)}")
return []
def extract_skills(self, text, job_description):
"""Extract skills from resume based on job description"""
if not text:
return []
# Common tech skills
common_skills = [
"python", "java", "javascript", "react", "angular", "vue", "node.js",
"express", "django", "flask", "spring", "sql", "nosql", "html", "css",
"aws", "azure", "gcp", "docker", "kubernetes", "jenkins", "git", "github",
"agile", "scrum", "jira", "ci/cd", "devops", "microservices", "rest", "api",
"machine learning", "deep learning", "data science", "artificial intelligence",
"tensorflow", "pytorch", "keras", "scikit-learn", "pandas", "numpy",
"matplotlib", "seaborn", "jupyter", "r", "sas", "spss", "tableau", "powerbi",
"excel", "mysql", "postgresql", "mongodb", "redis", "elasticsearch",
"kafka", "rabbitmq", "spark", "hadoop", "hive", "airflow", "linux", "unix"
]
# Extract potential skills from job description
job_words = set(word.lower() for word in word_tokenize(job_description) if len(word) > 2)
# Find matching skills
found_skills = []
text_lower = text.lower()
# Check common skills that appear in both resume and job description
for skill in common_skills:
if skill in text_lower and any(skill in job_word for job_word in job_words):
found_skills.append(skill)
# Check for skills mentioned in job description
for word in job_words:
if len(word) > 3 and word in text_lower and word not in found_skills:
# Basic filter to avoid common words
if word not in ['with', 'have', 'that', 'this', 'from', 'what', 'when', 'where']:
found_skills.append(word)
return list(set(found_skills))[:15] # Return top 15 unique skills
def generate_simple_explanation(self, score, semantic_score, bm25_score, skills):
"""Generate simple explanation for the match (fallback)"""
if score > 0.8:
quality = "excellent"
elif score > 0.6:
quality = "strong"
elif score > 0.4:
quality = "moderate"
else:
quality = "limited"
explanation = f"This candidate shows {quality} alignment with the position (score: {score:.2f}). "
if semantic_score > bm25_score:
explanation += f"The resume demonstrates strong conceptual relevance ({semantic_score:.2f}) suggesting good experience fit. "
else:
explanation += f"The resume has high keyword match ({bm25_score:.2f}) indicating direct skill alignment. "
if skills:
explanation += f"Key matching competencies include: {', '.join(skills[:5])}."
return explanation
def generate_llm_explanation(self, resume_text, job_description, score, skills, max_retries=3):
"""Generate detailed explanation using Qwen3-14B"""
if not self.llm_client:
return self.generate_simple_explanation(score, score, score, skills)
# Truncate texts to manage token limits
resume_snippet = resume_text[:2000] if len(resume_text) > 2000 else resume_text
job_snippet = job_description[:1000] if len(job_description) > 1000 else job_description
prompt = f"""You are an expert HR analyst. Analyze this individual candidate's resume against the job requirements and write EXACTLY 150 words explaining why this specific candidate is suitable for the position.
Structure your 150-word analysis as follows:
1. Experience alignment (40-50 words)
2. Key strengths and skills match (40-50 words)
3. Unique value proposition (40-50 words)
4. Overall recommendation (10-20 words)
Job Requirements:
{job_snippet}
Candidate's Resume:
{resume_snippet}
Identified Matching Skills: {', '.join(skills[:10])}
Compatibility Score: {score:.1%}
Write a professional, detailed 150-word analysis for THIS INDIVIDUAL CANDIDATE:"""
for attempt in range(max_retries):
try:
response = self.llm_client.text_generation(
prompt,
max_new_tokens=200,
temperature=0.7,
top_p=0.9,
do_sample=True
)
# Extract the response and ensure it's about 150 words
explanation = response.strip()
word_count = len(explanation.split())
# If response is close to 150 words (130-170), accept it
if 130 <= word_count <= 170:
return explanation
# If response is too short or too long, try again with adjusted prompt
if word_count < 130:
# Response too short, try again
continue
elif word_count > 170:
# Response too long, truncate to approximately 150 words
words = explanation.split()
truncated = ' '.join(words[:150])
# Add proper ending if truncated
if not truncated.endswith('.'):
truncated += '.'
return truncated
return explanation
except Exception as e:
if attempt < max_retries - 1:
time.sleep(2) # Wait before retry
continue
else:
# Fallback to simple explanation
return self.generate_simple_explanation(score, score, score, skills)
# If all retries failed, use simple explanation
return self.generate_simple_explanation(score, score, score, skills)
def create_download_link(df, filename="resume_screening_results.csv"):
"""Create download link for results"""
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
return f'<a href="data:file/csv;base64,{b64}" download="{filename}" class="download-btn">π₯ Download Results CSV</a>'
# Main App Interface
st.title("π― AI-Powered Resume Screener")
st.markdown("*Find the perfect candidates using BAAI/bge-large-en-v1.5 embeddings and Qwen3-14B explanations*")
st.markdown("---")
# Initialize screener
screener = ResumeScreener()
# Initialize LLM client if enabled
if use_llm_explanations:
if 'hf_token' in locals() and hf_token:
if st.session_state.llm_client is None:
st.session_state.llm_client = initialize_llm_client(hf_token)
else:
if st.session_state.llm_client is None:
st.session_state.llm_client = initialize_llm_client()
screener.set_llm_client(st.session_state.llm_client)
# Job Description Input
st.header("π Step 1: Enter Job Description")
job_description = st.text_area(
"Enter the complete job description or requirements:",
height=150,
placeholder="Paste the job description here, including required skills, experience, and qualifications..."
)
# Resume Input Options
st.header("π Step 2: Upload Resumes")
# Show loaded resumes indicator
if st.session_state.resume_texts:
col1, col2 = st.columns([3, 1])
with col1:
st.info(f"π {len(st.session_state.resume_texts)} resumes loaded and ready for analysis")
with col2:
if st.button("ποΈ Clear Resumes", type="secondary", help="Clear all loaded resumes to start fresh"):
st.session_state.resume_texts = []
st.session_state.file_names = []
st.session_state.results = []
st.session_state.explanations_generated = False
st.session_state.current_job_description = ""
st.rerun()
input_method = st.radio(
"Choose input method:",
["π Upload Files", "ποΈ Load from CSV Dataset", "π Load from Hugging Face Dataset"]
)
if input_method == "π Upload Files":
uploaded_files = st.file_uploader(
"Upload resume files",
type=["pdf", "docx", "txt"],
accept_multiple_files=True,
help="Supported formats: PDF, DOCX, TXT"
)
if uploaded_files:
with st.spinner(f"π Processing {len(uploaded_files)} files..."):
resume_texts = []
file_names = []
for file in uploaded_files:
file_type = file.name.split('.')[-1].lower()
with tempfile.NamedTemporaryFile(delete=False, suffix=f'.{file_type}') as tmp_file:
tmp_file.write(file.getvalue())
tmp_path = tmp_file.name
text = screener.extract_text_from_file(tmp_path, file_type)
if text.strip():
resume_texts.append(text)
file_names.append(file.name)
os.unlink(tmp_path)
st.session_state.resume_texts = resume_texts
st.session_state.file_names = file_names
if resume_texts:
st.success(f"β
Successfully processed {len(resume_texts)} resumes")
elif input_method == "ποΈ Load from CSV Dataset":
csv_file = st.file_uploader("Upload CSV file with resume data", type=["csv"])
if csv_file:
try:
df = pd.read_csv(csv_file)
st.write("**CSV Preview:**")
st.dataframe(df.head())
text_column = st.selectbox(
"Select column containing resume text:",
df.columns.tolist()
)
name_column = st.selectbox(
"Select column for candidate names/IDs (optional):",
["Use Index"] + df.columns.tolist()
)
if st.button("π Process CSV Data"):
with st.spinner("π Processing CSV data..."):
resume_texts = []
file_names = []
for idx, row in df.iterrows():
text = str(row[text_column])
if text and text.strip() and text.lower() != 'nan':
resume_texts.append(text)
if name_column == "Use Index":
file_names.append(f"Resume_{idx}")
else:
file_names.append(str(row[name_column]))
st.session_state.resume_texts = resume_texts
st.session_state.file_names = file_names
if resume_texts:
st.success(f"β
Successfully loaded {len(resume_texts)} resumes from CSV")
except Exception as e:
st.error(f"β Error processing CSV: {str(e)}")
elif input_method == "π Load from Hugging Face Dataset":
st.markdown("**Popular Resume Datasets:**")
st.markdown("- `ahmedheakl/resume-atlas`")
st.markdown("- `InferenceFly/Resume-Dataset`")
col1, col2 = st.columns([2, 1])
with col1:
dataset_name = st.text_input(
"Dataset name:",
value="ahmedheakl/resume-atlas",
help="Enter Hugging Face dataset name"
)
with col2:
dataset_split = st.selectbox("Split:", ["train", "test", "validation"], index=0)
if st.button("π Load from Hugging Face"):
try:
with st.spinner(f"π Loading {dataset_name}..."):
dataset = load_dataset(dataset_name, split=dataset_split)
st.success(f"β
Loaded dataset with {len(dataset)} entries")
st.write("**Dataset Preview:**")
preview_df = pd.DataFrame(dataset[:5])
st.dataframe(preview_df)
text_column = st.selectbox(
"Select column with resume text:",
dataset.column_names,
index=dataset.column_names.index('resume_text') if 'resume_text' in dataset.column_names else 0
)
category_column = None
if 'category' in dataset.column_names:
categories = list(set(dataset['category']))
category_column = st.selectbox(
"Filter by category (optional):",
["All"] + categories
)
max_samples = st.slider("Maximum samples to load:", 10, min(1000, len(dataset)), 100)
if st.button("π Process Dataset"):
with st.spinner("π Processing dataset..."):
resume_texts = []
file_names = []
filtered_dataset = dataset
if category_column and category_column != "All":
filtered_dataset = dataset.filter(lambda x: x['category'] == category_column)
sample_indices = list(range(min(max_samples, len(filtered_dataset))))
for idx in sample_indices:
item = filtered_dataset[idx]
text = str(item[text_column])
if text and text.strip() and text.lower() != 'nan':
resume_texts.append(text)
if 'id' in item:
file_names.append(f"Resume_{item['id']}")
else:
file_names.append(f"Resume_{idx}")
st.session_state.resume_texts = resume_texts
st.session_state.file_names = file_names
if resume_texts:
st.success(f"β
Successfully loaded {len(resume_texts)} resumes")
except Exception as e:
st.error(f"β Error loading dataset: {str(e)}")
# Processing and Results
st.header("π Step 3: Analyze Resumes")
# First button: Find top K candidates (fast ranking)
col1, col2 = st.columns([1, 1])
with col1:
if st.button("π Advanced Pipeline Analysis",
disabled=not (job_description and st.session_state.resume_texts),
type="primary",
help="Run the complete 5-stage advanced pipeline"):
if len(st.session_state.resume_texts) == 0:
st.error("β Please upload resumes first!")
elif not job_description.strip():
st.error("β Please enter a job description!")
else:
with st.spinner("π Running Advanced Pipeline Analysis..."):
try:
# Run the advanced pipeline
pipeline_results = screener.advanced_pipeline_ranking(
st.session_state.resume_texts, job_description
)
# Prepare results for display
results = []
for rank, result_data in enumerate(pipeline_results, 1):
idx = result_data['index']
name = st.session_state.file_names[idx]
text = st.session_state.resume_texts[idx]
# Extract skills
skills = screener.extract_skills(text, job_description)
results.append({
'rank': rank,
'name': name,
'final_score': result_data['final_score'],
'cross_encoder_score': result_data['cross_encoder_score'],
'bm25_score': result_data['bm25_score'],
'intent_score': result_data['intent_score'],
'skills': skills,
'text': text,
'text_preview': text[:500] + "..." if len(text) > 500 else text,
'explanation': None # No detailed explanation yet
})
# Add simple explanations for now
for result in results:
result['explanation'] = screener.generate_simple_explanation(
result['final_score'],
result['cross_encoder_score'],
result['bm25_score'],
result['skills']
)
# Store in session state
st.session_state.results = results
st.session_state.explanations_generated = False
st.session_state.current_job_description = job_description
st.success(f"π Advanced pipeline complete! Found top {len(st.session_state.results)} candidates.")
except Exception as e:
st.error(f"β Error during analysis: {str(e)}")
# Second button: Generate AI explanations (slower, optional)
with col2:
# Show this button only if we have results and LLM is enabled
show_explanation_button = (
st.session_state.results and
use_llm_explanations and
st.session_state.llm_client and
not st.session_state.explanations_generated
)
if show_explanation_button:
if st.button("π€ Generate AI Explanations",
type="secondary",
help="Generate detailed 150-word explanations using Qwen3-14B (takes longer)"):
with st.spinner("π€ Generating detailed AI explanations..."):
try:
explanation_progress = st.progress(0)
explanation_text = st.empty()
for i, result in enumerate(st.session_state.results):
explanation_text.text(f"π€ Generating AI explanation for candidate {i+1}/{len(st.session_state.results)}...")
llm_explanation = screener.generate_llm_explanation(
result['text'],
st.session_state.current_job_description,
result['final_score'],
result['skills']
)
result['explanation'] = llm_explanation
explanation_progress.progress((i + 1) / len(st.session_state.results))
explanation_progress.empty()
explanation_text.empty()
# Mark explanations as generated
st.session_state.explanations_generated = True
st.success(f"π€ AI explanations generated for all {len(st.session_state.results)} candidates!")
except Exception as e:
st.error(f"β Error generating explanations: {str(e)}")
elif st.session_state.results and st.session_state.explanations_generated:
st.info("β
AI explanations already generated!")
elif st.session_state.results and not use_llm_explanations:
st.info("π‘ Enable 'Generate AI Explanations' in sidebar to use this feature")
elif st.session_state.results and not st.session_state.llm_client:
st.warning("β οΈ LLM client not available. Check your Hugging Face token.")
# Display Results
if st.session_state.results:
st.header("π Top Candidates")
# Create tabs for different views
tab1, tab2, tab3 = st.tabs(["π Summary", "π Detailed Analysis", "π Visualizations"])
with tab1:
# Create summary dataframe with new scoring system
summary_data = []
for result in st.session_state.results:
# Map intent score to text
intent_text = "Yes" if result['intent_score'] == 0.3 else "Maybe" if result['intent_score'] == 0.1 else "No"
summary_data.append({
"Rank": result['rank'],
"Candidate": result['name'],
"Final Score": f"{result['final_score']:.2f}",
"Cross-Encoder": f"{result['cross_encoder_score']:.2f}",
"BM25": f"{result['bm25_score']:.2f}",
"Intent": f"{intent_text} ({result['intent_score']:.1f})",
"Top Skills": ", ".join(result['skills'][:5])
})
summary_df = pd.DataFrame(summary_data)
# Style the dataframe
def color_scores(val):
if isinstance(val, str) and any(char.isdigit() for char in val):
try:
# Extract numeric value
numeric_val = float(''.join(c for c in val if c.isdigit() or c == '.'))
if 'Final Score' in val or numeric_val >= 1.0:
if numeric_val >= 1.2:
return 'background-color: #d4edda'
elif numeric_val >= 1.0:
return 'background-color: #fff3cd'
else:
return 'background-color: #f8d7da'
else:
if numeric_val >= 0.7:
return 'background-color: #d4edda'
elif numeric_val >= 0.5:
return 'background-color: #fff3cd'
else:
return 'background-color: #f8d7da'
except:
pass
return ''
styled_df = summary_df.style.applymap(color_scores, subset=['Final Score', 'Cross-Encoder', 'BM25'])
st.dataframe(styled_df, use_container_width=True)
# Download link
detailed_data = []
for result in st.session_state.results:
intent_text = "Yes" if result['intent_score'] == 0.3 else "Maybe" if result['intent_score'] == 0.1 else "No"
detailed_data.append({
"Rank": result['rank'],
"Candidate": result['name'],
"Final_Score": result['final_score'],
"Cross_Encoder_Score": result['cross_encoder_score'],
"BM25_Score": result['bm25_score'],
"Intent_Score": result['intent_score'],
"Intent_Analysis": intent_text,
"Skills": "; ".join(result['skills']),
"AI_Explanation": result['explanation'],
"Resume_Preview": result['text_preview']
})
download_df = pd.DataFrame(detailed_data)
st.markdown(create_download_link(download_df), unsafe_allow_html=True)
with tab2:
# Detailed results with new scoring breakdown
for result in st.session_state.results:
intent_text = "Yes" if result['intent_score'] == 0.3 else "Maybe" if result['intent_score'] == 0.1 else "No"
with st.expander(f"#{result['rank']}: {result['name']} (Final Score: {result['final_score']:.2f})"):
col1, col2 = st.columns([1, 2])
with col1:
st.metric("π Final Score", f"{result['final_score']:.2f}")
st.write("**π Score Breakdown:**")
st.metric("π― Cross-Encoder", f"{result['cross_encoder_score']:.2f}", help="Semantic relevance (0-1)")
st.metric("π€ BM25 Keywords", f"{result['bm25_score']:.2f}", help="Keyword matching (0.1-0.2)")
st.metric("π€ Intent Analysis", f"{intent_text} ({result['intent_score']:.1f})", help="Job seeking likelihood (0-0.3)")
st.write("**π― Matching Skills:**")
skills_per_column = 5
skill_cols = st.columns(2)
for idx, skill in enumerate(result['skills'][:10]):
with skill_cols[idx % 2]:
st.write(f"β’ {skill}")
with col2:
st.write("**π‘ AI-Generated Match Analysis:**")
st.info(result['explanation'])
st.write("**π Resume Preview:**")
st.text_area("", result['text_preview'], height=200, disabled=True, key=f"preview_{result['rank']}")
with tab3:
# Score visualization
if len(st.session_state.results) > 1:
# Bar chart
st.subheader("Score Comparison")
chart_data = pd.DataFrame({
'Candidate': [r['name'][:20] + '...' if len(r['name']) > 20 else r['name']
for r in st.session_state.results],
'Final Score': [r['final_score'] for r in st.session_state.results],
'Cross-Encoder': [r['cross_encoder_score'] for r in st.session_state.results],
'BM25': [r['bm25_score'] for r in st.session_state.results],
'Intent': [r['intent_score'] for r in st.session_state.results]
})
st.bar_chart(chart_data.set_index('Candidate'))
# Score distribution
col1, col2 = st.columns(2)
with col1:
st.subheader("Score Distribution")
score_ranges = {
'Excellent (β₯1.2)': sum(1 for r in st.session_state.results if r['final_score'] >= 1.2),
'Good (1.0-1.2)': sum(1 for r in st.session_state.results if 1.0 <= r['final_score'] < 1.2),
'Fair (0.8-1.0)': sum(1 for r in st.session_state.results if 0.8 <= r['final_score'] < 1.0),
'Poor (<0.8)': sum(1 for r in st.session_state.results if r['final_score'] < 0.8),
}
dist_df = pd.DataFrame({
'Range': score_ranges.keys(),
'Count': score_ranges.values()
})
st.bar_chart(dist_df.set_index('Range'))
with col2:
st.subheader("Average Scores")
avg_final = np.mean([r['final_score'] for r in st.session_state.results])
avg_cross = np.mean([r['cross_encoder_score'] for r in st.session_state.results])
avg_bm25 = np.mean([r['bm25_score'] for r in st.session_state.results])
avg_intent = np.mean([r['intent_score'] for r in st.session_state.results])
st.metric("Average Final Score", f"{avg_final:.2f}")
st.metric("Average Cross-Encoder", f"{avg_cross:.2f}")
st.metric("Average BM25", f"{avg_bm25:.2f}")
st.metric("Average Intent", f"{avg_intent:.2f}")
# Memory cleanup
st.markdown("---")
st.subheader("π§Ή Reset Application")
col1, col2, col3 = st.columns([1, 1, 3])
with col1:
if st.button("ποΈ Clear Resumes Only", type="secondary", help="Clear only the loaded resumes"):
st.session_state.resume_texts = []
st.session_state.file_names = []
st.session_state.results = []
st.session_state.explanations_generated = False
st.session_state.current_job_description = ""
st.success("β
Resumes cleared!")
st.rerun()
with col2:
if st.button("π§Ή Clear Everything", type="primary", help="Clear all data and free memory"):
st.session_state.resume_texts = []
st.session_state.file_names = []
st.session_state.results = []
st.session_state.explanations_generated = False
st.session_state.current_job_description = ""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
st.success("β
Everything cleared!")
st.rerun()
# Footer
st.markdown("---")
st.markdown(
"""
<div style='text-align: center; color: #666;'>
π Powered by BAAI/bge-large-en-v1.5 & Qwen3-14B | Built with Streamlit
</div>
""",
unsafe_allow_html=True
) |