File size: 43,589 Bytes
a928595
556ee06
8c40ab2
d60989a
 
 
 
 
 
1d59f84
 
6ff5e82
d60989a
 
 
6ff5e82
 
6433e25
1d59f84
 
 
d60989a
 
 
 
 
 
a928595
d60989a
7044586
6ff5e82
 
d60989a
 
7044586
 
70c101d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c71ed9b
70c101d
 
c71ed9b
 
 
 
70c101d
c71ed9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70c101d
 
 
c71ed9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d60989a
6ff5e82
d60989a
 
c71ed9b
 
 
 
1d59f84
 
 
c71ed9b
 
 
 
53cdf96
d60989a
1d59f84
 
 
 
c71ed9b
 
1d59f84
 
 
baade64
1d59f84
 
7044586
c71ed9b
 
 
 
 
 
70c101d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d60989a
7044586
c71ed9b
1d59f84
 
6ff5e82
 
d60989a
6ff5e82
 
 
d60989a
7044586
6ff5e82
 
 
1d59f84
 
 
 
 
 
 
 
 
 
 
 
 
6ff5e82
 
 
d60989a
7044586
6ff5e82
d60989a
 
6ff5e82
d60989a
6ff5e82
d60989a
7044586
d60989a
6ff5e82
1d59f84
 
 
d60989a
 
556ee06
d60989a
 
 
556ee06
d60989a
6ff5e82
d60989a
 
556ee06
d60989a
1d59f84
 
 
 
6ff5e82
 
 
 
 
53cdf96
6ff5e82
 
 
 
 
53cdf96
6ff5e82
 
 
 
53cdf96
6ff5e82
 
 
 
 
 
 
1d59f84
 
 
6ff5e82
 
 
 
53cdf96
6ff5e82
 
 
 
1d59f84
 
 
53cdf96
6ff5e82
 
53cdf96
6ff5e82
 
 
 
1d59f84
 
 
6ff5e82
 
 
 
 
 
 
53cdf96
6ff5e82
 
 
 
 
 
 
53cdf96
6ff5e82
 
 
 
 
 
 
 
 
1d59f84
6ff5e82
 
 
 
1d59f84
6ff5e82
 
1d59f84
53cdf96
6ff5e82
 
 
 
 
1d59f84
 
 
6ff5e82
53cdf96
6ff5e82
 
53cdf96
6ff5e82
53cdf96
6ff5e82
 
 
53cdf96
6ff5e82
 
53cdf96
6ff5e82
 
 
 
1d59f84
 
 
6ff5e82
 
 
 
 
 
d60989a
6ff5e82
1d59f84
 
 
 
 
 
 
70c101d
 
 
 
 
1d59f84
 
baade64
1d59f84
 
 
 
 
baade64
1d59f84
baade64
1d59f84
 
 
 
6ff5e82
1d59f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baade64
1d59f84
 
 
 
 
 
 
baade64
1d59f84
 
 
 
6ff5e82
d60989a
6ff5e82
d60989a
1d59f84
 
d60989a
1d59f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d60989a
1d59f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff5e82
1d59f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1efc08
 
1d59f84
 
 
 
 
 
 
d60989a
1d59f84
 
 
 
 
c1efc08
 
1d59f84
 
 
 
 
6ff5e82
1d59f84
 
 
 
6ff5e82
 
1d59f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7044586
d60989a
7044586
6ff5e82
 
 
baade64
6ff5e82
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
import streamlit as st
import pandas as pd
import numpy as np
import torch
import nltk
import os
import tempfile
import base64
from rank_bm25 import BM25Okapi
from sentence_transformers import SentenceTransformer, CrossEncoder
from nltk.tokenize import word_tokenize
import pdfplumber
import PyPDF2
from docx import Document
import csv
from datasets import load_dataset
import gc
from transformers import AutoModelForCausalLM, AutoTokenizer
import time
import faiss
import re

# Download NLTK resources
try:
    nltk.data.find('tokenizers/punkt')
except LookupError:
    nltk.download('punkt')

# Set page configuration
st.set_page_config(
    page_title="AI Resume Screener",
    page_icon="🎯",
    layout="wide",
    initial_sidebar_state="expanded"
)

# --- Global Device and Model Loading Section ---

# Initialize session state keys for all models, their loading status/errors, and app data
keys_to_initialize = {
    'embedding_model': None, 'embedding_model_error': None,
    'cross_encoder': None, 'cross_encoder_error': None,
    'qwen3_1_7b_tokenizer': None, 'qwen3_1_7b_tokenizer_error': None,
    'qwen3_1_7b_model': None, 'qwen3_1_7b_model_error': None,
    'results': [], 'resume_texts': [], 'file_names': [], 'current_job_description': ""
    # Add any other app-specific session state keys here if needed
}
for key, default_value in keys_to_initialize.items():
    if key not in st.session_state:
        st.session_state[key] = default_value

# Load Embedding Model (BAAI/bge-large-en-v1.5)
if st.session_state.embedding_model is None and st.session_state.embedding_model_error is None:
    print("[Global Init] Attempting to load Embedding Model (BAAI/bge-large-en-v1.5) with device_map='auto'...")
    try:
        st.session_state.embedding_model = SentenceTransformer(
            'BAAI/bge-large-en-v1.5', 
            device_map="auto"
        )
        print(f"[Global Init] Embedding Model (BAAI/bge-large-en-v1.5) LOADED with device_map='auto'.")
    except Exception as e:
        if "device_map" in str(e).lower() and "unexpected keyword argument" in str(e).lower():
            print("⚠️ [Global Init] device_map='auto' not supported for SentenceTransformer. Falling back to default device handling.")
            try:
                st.session_state.embedding_model = SentenceTransformer('BAAI/bge-large-en-v1.5')
                print(f"[Global Init] Embedding Model (BAAI/bge-large-en-v1.5) LOADED (fallback device handling).")
            except Exception as e_fallback:
                error_msg = f"Failed to load Embedding Model (fallback): {str(e_fallback)}"
                print(f"❌ [Global Init] {error_msg}")
                st.session_state.embedding_model_error = error_msg
        else:
            error_msg = f"Failed to load Embedding Model: {str(e)}"
            print(f"❌ [Global Init] {error_msg}")
            st.session_state.embedding_model_error = error_msg

# Load Cross-Encoder Model (ms-marco-MiniLM-L6-v2)
if st.session_state.cross_encoder is None and st.session_state.cross_encoder_error is None:
    print("[Global Init] Attempting to load Cross-Encoder Model (ms-marco-MiniLM-L6-v2) with device_map='auto'...")
    try:
        st.session_state.cross_encoder = CrossEncoder(
            'cross-encoder/ms-marco-MiniLM-L6-v2', 
            device_map="auto"
        )
        print(f"[Global Init] Cross-Encoder Model (ms-marco-MiniLM-L6-v2) LOADED with device_map='auto'.")
    except Exception as e:
        if "device_map" in str(e).lower() and "unexpected keyword argument" in str(e).lower():
            print("⚠️ [Global Init] device_map='auto' not supported for CrossEncoder. Falling back to default device handling.")
            try:
                st.session_state.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2')
                print(f"[Global Init] Cross-Encoder Model (ms-marco-MiniLM-L6-v2) LOADED (fallback device handling).")
            except Exception as e_fallback:
                error_msg = f"Failed to load Cross-Encoder Model (fallback): {str(e_fallback)}"
                print(f"❌ [Global Init] {error_msg}")
                st.session_state.cross_encoder_error = error_msg
        else:
            error_msg = f"Failed to load Cross-Encoder Model: {str(e)}"
            print(f"❌ [Global Init] {error_msg}")
            st.session_state.cross_encoder_error = error_msg

# Load Qwen3-1.7B Tokenizer
if st.session_state.qwen3_1_7b_tokenizer is None and st.session_state.qwen3_1_7b_tokenizer_error is None:
    print("[Global Init] Loading Qwen3-1.7B Tokenizer...")
    try:
        st.session_state.qwen3_1_7b_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-1.7B")
        print("[Global Init] Qwen3-1.7B Tokenizer Loaded.")
    except Exception as e:
        error_msg = f"Failed to load Qwen3-1.7B Tokenizer: {str(e)}"
        print(f"❌ [Global Init] {error_msg}")
        st.session_state.qwen3_1_7b_tokenizer_error = error_msg

# Load Qwen3-1.7B Model
if st.session_state.qwen3_1_7b_model is None and st.session_state.qwen3_1_7b_model_error is None:
    print("[Global Init] Loading Qwen3-1.7B Model (attempting with device_map='auto')...")
    try:
        st.session_state.qwen3_1_7b_model = AutoModelForCausalLM.from_pretrained(
            "Qwen/Qwen3-1.7B", 
            torch_dtype="auto", 
            device_map="auto",
            trust_remote_code=True # if required by this specific model
        )
        print("[Global Init] Qwen3-1.7B Model Loaded with device_map='auto'.")
    except Exception as e_dev_map:
        print(f"⚠️ [Global Init] Failed to load Qwen3-1.7B with device_map='auto': {str(e_dev_map)}")
        print("[Global Init] Retrying Qwen3-1.7B load without device_map (will use default single device)...")
        try:
            st.session_state.qwen3_1_7b_model = AutoModelForCausalLM.from_pretrained(
                "Qwen/Qwen3-1.7B", 
                torch_dtype="auto", 
                # No device_map here, let Hugging Face decide or use CUDA if available
                trust_remote_code=True # if required
            )
            print("[Global Init] Qwen3-1.7B Model Loaded (fallback device handling).")
        except Exception as e_fallback:
            error_msg = f"Failed to load Qwen3-1.7B Model (fallback): {str(e_fallback)}"
            print(f"❌ [Global Init] {error_msg}")
            st.session_state.qwen3_1_7b_model_error = error_msg

# --- End of Global Model Loading Section ---

# --- Class Definitions and Helper Functions ---

def generate_qwen3_response(prompt, tokenizer, model, max_new_tokens=200):
    # ... (implementation of generate_qwen3_response)
    messages = [{"role": "user", "content": prompt}]
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True,
        enable_thinking=True # As per Qwen3-1.7B docs for thinking mode
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
    generated_ids = model.generate(
        **model_inputs,
        max_new_tokens=max_new_tokens
    )
    output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
    response = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n")
    return response

class ResumeScreener: # Ensure this class definition is BEFORE it's instantiated
    def __init__(self):
        # ... (init logic as before, referencing st.session_state for models)
        print("[ResumeScreener] Initializing with references to globally loaded models...")
        self.embedding_model = st.session_state.get('embedding_model')
        self.cross_encoder = st.session_state.get('cross_encoder')

        if self.embedding_model:
            print("[ResumeScreener] Embedding model reference set.")
        else:
            print("[ResumeScreener] Embedding model not available (check loading errors).")

        if self.cross_encoder:
            print("[ResumeScreener] Cross-encoder model reference set.")
        else:
            print("[ResumeScreener] Cross-encoder model not available (check loading errors).")
        
        print("[ResumeScreener] Initialization complete.")

    # ... (all other methods of ResumeScreener: extract_text_from_file, get_embedding, 
    #      calculate_bm25_scores, advanced_pipeline_ranking, faiss_recall, cross_encoder_rerank, 
    #      add_bm25_scores, add_intent_scores, analyze_intent, calculate_final_scores, extract_skills)
    # Make sure all methods are correctly indented within the class

    def extract_text_from_file(self, file_path, file_type):
        # ... (implementation)
        try:
            if file_type == "pdf":
                with open(file_path, 'rb') as file:
                    with pdfplumber.open(file) as pdf:
                        text = ""
                        for page in pdf.pages:
                            text += page.extract_text() or ""
                        if not text.strip():
                            file.seek(0)
                            reader = PyPDF2.PdfReader(file)
                            text = ""
                            for page_num in range(len(reader.pages)):
                                text += reader.pages[page_num].extract_text() or ""
                        return text
            elif file_type == "docx":
                doc = Document(file_path)
                return " ".join([paragraph.text for paragraph in doc.paragraphs])
            elif file_type == "txt":
                with open(file_path, 'r', encoding='utf-8') as file:
                    return file.read()
            elif file_type == "csv":
                with open(file_path, 'r', encoding='utf-8') as file:
                    csv_reader = csv.reader(file)
                    return " ".join([" ".join(row) for row in csv_reader])
        except Exception as e:
            st.error(f"Error extracting text from {file_path}: {str(e)}")
            return ""

    def get_embedding(self, text):
        if self.embedding_model is None:
            st.error("Embedding model is not available!")
            return np.zeros(1024)
        try:
            if len(text) < 500:
                text = "Represent this sentence for searching relevant passages: " + text
            text = text[:8192] if text else ""
            embedding = self.embedding_model.encode(text, convert_to_numpy=True, normalize_embeddings=True)
            return embedding
        except Exception as e:
            st.error(f"Error generating embedding: {str(e)}")
            return np.zeros(1024)

    def calculate_bm25_scores(self, resume_texts, job_description):
        try:
            job_tokens = word_tokenize(job_description.lower())
            corpus = [word_tokenize(text.lower()) for text in resume_texts if text and text.strip()]
            if not corpus:
                return [0.0] * len(resume_texts)
            bm25 = BM25Okapi(corpus)
            scores = bm25.get_scores(job_tokens)
            return scores.tolist()
        except Exception as e:
            st.error(f"Error calculating BM25 scores: {str(e)}")
            return [0.0] * len(resume_texts)

    def advanced_pipeline_ranking(self, resume_texts, job_description):
        print("[Pipeline] Advanced Pipeline Ranking started.")
        if not resume_texts:
            return []
        st.info("πŸ” Stage 1: FAISS Recall - Finding top candidates...")
        top_50_indices = self.faiss_recall(resume_texts, job_description, top_k=50)
        st.info("🎯 Stage 2: Cross-Encoder Re-ranking - Selecting top candidates...")
        top_20_results = self.cross_encoder_rerank(resume_texts, job_description, top_50_indices, top_k=20)
        st.info("πŸ”€ Stage 3: BM25 Keyword Matching...")
        top_20_with_bm25 = self.add_bm25_scores(resume_texts, job_description, top_20_results)
        st.info("πŸ€– Stage 4: LLM Intent Analysis (Qwen3-1.7B)...")
        top_20_with_intent = self.add_intent_scores(resume_texts, job_description, top_20_with_bm25)
        st.info("πŸ† Stage 5: Final Combined Ranking...")
        final_results = self.calculate_final_scores(top_20_with_intent)
        print("[Pipeline] Advanced Pipeline Ranking finished.")
        return final_results[:st.session_state.get('top_k', 5)]

    def faiss_recall(self, resume_texts, job_description, top_k=50):
        print("[faiss_recall] Method started.")
        st.text("FAISS Recall: Embedding job description...")
        job_embedding = self.get_embedding(job_description)
        st.text(f"FAISS Recall: Embedding {len(resume_texts)} resumes...")
        resume_embeddings = []
        progress_bar = st.progress(0)
        for i, text in enumerate(resume_texts):
            if text:
                embedding = self.embedding_model.encode(text[:8192], convert_to_numpy=True, normalize_embeddings=True)
                resume_embeddings.append(embedding)
            else:
                resume_embeddings.append(np.zeros(1024))
            progress_bar.progress((i + 1) / len(resume_texts))
        progress_bar.empty()
        resume_embeddings_np = np.array(resume_embeddings).astype('float32') # Renamed variable
        if resume_embeddings_np.ndim == 1: # Handle case of single resume
             resume_embeddings_np = resume_embeddings_np.reshape(1, -1)
        if resume_embeddings_np.size == 0:
            print("[faiss_recall] No resume embeddings to add to FAISS index.")
            return [] # Or handle error appropriately

        dimension = resume_embeddings_np.shape[1]
        index = faiss.IndexFlatIP(dimension)
        index.add(resume_embeddings_np)
        job_embedding_np = job_embedding.reshape(1, -1).astype('float32') # Renamed variable
        scores, indices = index.search(job_embedding_np, min(top_k, len(resume_texts)))
        return indices[0].tolist()

    def cross_encoder_rerank(self, resume_texts, job_description, top_50_indices, top_k=20):
        print("[cross_encoder_rerank] Method started.")
        if not self.cross_encoder:
            st.error("Cross-encoder model is not available!")
            return [(idx, 0.0) for idx in top_50_indices[:top_k]]
        pairs = []
        valid_indices = []
        for idx in top_50_indices:
            if idx < len(resume_texts) and resume_texts[idx]:
                job_snippet = job_description[:512]
                resume_snippet = resume_texts[idx][:512]
                pairs.append([job_snippet, resume_snippet])
                valid_indices.append(idx)
        if not pairs:
            return [(idx, 0.0) for idx in top_50_indices[:top_k]]
        st.text(f"Cross-Encoder: Preparing {len(pairs)} pairs for re-ranking...")
        scores = []
        batch_size = 8
        progress_bar = st.progress(0)
        for i in range(0, len(pairs), batch_size):
            batch = pairs[i:i+batch_size]
            batch_scores = self.cross_encoder.predict(batch)
            scores.extend(batch_scores)
            progress_bar.progress(min(1.0, (i + batch_size) / len(pairs)))
        progress_bar.empty()
        indexed_scores = list(zip(valid_indices, scores))
        indexed_scores.sort(key=lambda x: x[1], reverse=True)
        return indexed_scores[:top_k]

    def add_bm25_scores(self, resume_texts, job_description, top_20_results):
        st.text("BM25: Calculating keyword scores...")
        top_20_texts = [resume_texts[idx] for idx, _ in top_20_results]
        bm25_scores_raw = self.calculate_bm25_scores(top_20_texts, job_description)
        if bm25_scores_raw and max(bm25_scores_raw) > 0:
            max_bm25, min_bm25 = max(bm25_scores_raw), min(bm25_scores_raw)
            if max_bm25 > min_bm25:
                normalized_bm25 = [0.1 + 0.1 * (s - min_bm25) / (max_bm25 - min_bm25) for s in bm25_scores_raw]
            else:
                normalized_bm25 = [0.15] * len(bm25_scores_raw)
        else:
            normalized_bm25 = [0.15] * len(top_20_results)
        results_with_bm25 = []
        for i, (idx, cross_score) in enumerate(top_20_results):
            results_with_bm25.append((idx, cross_score, normalized_bm25[i] if i < len(normalized_bm25) else 0.15))
        return results_with_bm25

    def add_intent_scores(self, resume_texts, job_description, top_20_with_bm25):
        st.text(f"LLM Intent: Analyzing intent for {len(top_20_with_bm25)} candidates (Qwen3-1.7B)...")
        results_with_intent = []
        progress_bar = st.progress(0)
        for i, (idx, cross_score, bm25_score) in enumerate(top_20_with_bm25):
            intent_score = self.analyze_intent(resume_texts[idx], job_description)
            results_with_intent.append((idx, cross_score, bm25_score, intent_score))
            progress_bar.progress((i + 1) / len(top_20_with_bm25))
        progress_bar.empty()
        return results_with_intent

    def analyze_intent(self, resume_text, job_description):
        print(f"[analyze_intent] Analyzing intent for one resume (Qwen3-1.7B)...")
        st.text("LLM Intent: Analyzing intent (Qwen3-1.7B)...")
        try:
            resume_snippet = resume_text[:15000]
            job_snippet = job_description[:5000]
            prompt = f\"\"\"You are given a job description and a candidate's resume... (rest of prompt)\"\"\" # Ensure f-string is correct
            # ... (rest of analyze_intent, using st.session_state.qwen3_1_7b_tokenizer and _model)
            response_text = generate_qwen3_response(
                prompt,
                st.session_state.qwen3_1_7b_tokenizer,
                st.session_state.qwen3_1_7b_model,
                max_new_tokens=20000
            )
            # ... (parsing logic for response_text) ...
            thinking_content = "No detailed thought process extracted."
            intent_decision_part = response_text
            think_start_tag = "<think>"
            think_end_tag = "</think>"
            start_index = response_text.find(think_start_tag)
            end_index = response_text.rfind(think_end_tag)
            if start_index != -1 and end_index != -1 and start_index < end_index:
                thinking_content = response_text[start_index + len(think_start_tag):end_index].strip()
                intent_decision_part = response_text[end_index + len(think_end_tag):].strip()
            response_lower = intent_decision_part.lower()
            intent_score = 0.1
            if 'intent: yes' in response_lower or 'intent:yes' in response_lower:
                intent_score = 0.3
            elif 'intent: no' in response_lower or 'intent:no' in response_lower:
                intent_score = 0.0
            return intent_score
        except Exception as e:
            st.warning(f"Error analyzing intent with Qwen3-1.7B: {str(e)}")
            return 0.1

    def calculate_final_scores(self, results_with_all_scores):
        final_results = []
        for idx, cross_score, bm25_score, intent_score in results_with_all_scores:
            normalized_cross = max(0, min(1, cross_score))
            final_score = normalized_cross + bm25_score + intent_score
            final_results.append({
                'index': idx, 'cross_encoder_score': normalized_cross,
                'bm25_score': bm25_score, 'intent_score': intent_score,
                'final_score': final_score
            })
        final_results.sort(key=lambda x: x['final_score'], reverse=True)
        return final_results

    def extract_skills(self, text, job_description):
        # ... (implementation)
        if not text: return []
        common_skills = ["python", "java", "javascript", "react", "angular", "vue", "node.js", "express", "django", "flask", "spring", "sql", "nosql", "html", "css", "aws", "azure", "gcp", "docker", "kubernetes", "jenkins", "git", "github", "agile", "scrum", "jira", "ci/cd", "devops", "microservices", "rest", "api", "machine learning", "deep learning", "data science", "artificial intelligence", "tensorflow", "pytorch", "keras", "scikit-learn", "pandas", "numpy", "matplotlib", "seaborn", "jupyter", "r", "sas", "spss", "tableau", "powerbi", "excel", "mysql", "postgresql", "mongodb", "redis", "elasticsearch", "kafka", "rabbitmq", "spark", "hadoop", "hive", "airflow", "linux", "unix"]
        job_words = set(word.lower() for word in word_tokenize(job_description) if len(word) > 2)
        found_skills = []
        text_lower = text.lower()
        for skill in common_skills:
            if skill in text_lower and any(skill in job_word for job_word in job_words):
                found_skills.append(skill)
        for word in job_words:
            if len(word) > 3 and word in text_lower and word not in found_skills and word not in ['with', 'have', 'that', 'this', 'from', 'what', 'when', 'where']:
                found_skills.append(word)
        return list(set(found_skills))[:15]

def create_download_link(df, filename="resume_screening_results.csv"):
    # ... (implementation)
    csv = df.to_csv(index=False)
    b64 = base64.b64encode(csv.encode()).decode()
    return f'<a href="data:file/csv;base64,{b64}" download="{filename}" class="download-btn">πŸ“₯ Download Results CSV</a>'

# --- Sidebar Configuration (Must be after global model loading and class defs if it uses them) ---
with st.sidebar:
    st.title("βš™οΈ Configuration")
    # Advanced options
    st.subheader("Advanced Options")
    # Ensure top_k is in session_state if it's used by advanced_pipeline_ranking before button press
    if 'top_k' not in st.session_state:
        st.session_state.top_k = 5 # Default value
    st.session_state.top_k = st.selectbox("Number of results to display", [1,2,3,4,5], index=st.session_state.top_k-1, key="top_k_selector")
    
    # LLM Settings
    st.subheader("LLM Settings")
    # use_llm_explanations = st.checkbox("Generate AI Explanations", value=True) # This was removed earlier
    # if use_llm_explanations:
    #     hf_token = st.text_input("Hugging Face Token (optional)", type="password", 
    #                             help="Enter your HF token for better rate limits")
    
    st.markdown("---")
    st.markdown("### πŸ€– Advanced Pipeline")
    st.markdown("- **Stage 1**: FAISS Recall (Top 50)")
    st.markdown("- **Stage 2**: Cross-Encoder Re-ranking (Top 20)")
    st.markdown("- **Stage 3**: BM25 Keyword Matching")
    st.markdown("- **Stage 4**: LLM Intent Analysis (Qwen3-1.7B)")
    st.markdown("- **Final**: Combined Scoring") # Updated this line
    st.markdown("### πŸ“Š Models Used")
    st.markdown("- **Embedding**: BAAI/bge-large-en-v1.5")
    st.markdown("- **Cross-Encoder**: ms-marco-MiniLM-L6-v2")
    st.markdown("- **LLM**: Qwen/Qwen3-1.7B")
    st.markdown("### πŸ“ˆ Scoring Formula")
    st.markdown("**Final Score = Cross-Encoder (0-1) + BM25 (0.1-0.2) + Intent (0-0.3)**")

# --- Main App Interface (Must be after global model loading and class defs) ---
st.title("🎯 AI-Powered Resume Screener")
# ... (Model Loading Status display as before)
# ...
st.markdown("*Find the perfect candidates using BAAI/bge-large-en-v1.5 embeddings and Qwen3-1.7B for intent analysis*")

st.subheader("πŸ€– Model Loading Status")
col1, col2 = st.columns(2)
with col1:
    if st.session_state.get('embedding_model_error'):
        st.error(f"Embedding Model: {st.session_state.embedding_model_error}")
    elif st.session_state.get('embedding_model'):
        st.success("βœ… Embedding Model (BAAI/bge-large-en-v1.5) loaded.")
    else:
        st.warning("⏳ Embedding Model loading or not found (check console).")
    if st.session_state.get('cross_encoder_error'):
        st.error(f"Cross-Encoder Model: {st.session_state.cross_encoder_error}")
    elif st.session_state.get('cross_encoder'):
        st.success("βœ… Cross-Encoder Model (ms-marco-MiniLM-L6-v2) loaded.")
    else:
        st.warning("⏳ Cross-Encoder Model loading or not found (check console).")
with col2:
    if st.session_state.get('qwen3_1_7b_tokenizer_error'):
        st.error(f"Qwen3-1.7B Tokenizer: {st.session_state.qwen3_1_7b_tokenizer_error}")
    elif st.session_state.get('qwen3_1_7b_tokenizer'):
        st.success("βœ… Qwen3-1.7B Tokenizer loaded.")
    else:
        st.warning("⏳ Qwen3-1.7B Tokenizer loading or not found (check console).")
    if st.session_state.get('qwen3_1_7b_model_error'):
        st.error(f"Qwen3-1.7B Model: {st.session_state.qwen3_1_7b_model_error}")
    elif st.session_state.get('qwen3_1_7b_model'):
        st.success("βœ… Qwen3-1.7B Model loaded.")
    else:
        st.warning("⏳ Qwen3-1.7B Model loading or not found (check console).")
st.markdown("---")

# Initialize screener (This line was causing NameError, ensure class is defined above)
screener = ResumeScreener()

# Job Description Input
st.header("πŸ“ Step 1: Enter Job Description")
job_description = st.text_area(
    "Enter the complete job description or requirements:",
    height=150,
    placeholder="Paste the job description here, including required skills, experience, and qualifications..."
)

# Resume Input Options
st.header("πŸ“„ Step 2: Upload Resumes")

# Show loaded resumes indicator
if st.session_state.resume_texts:
    col1, col2 = st.columns([3, 1])
    with col1:
        st.info(f"πŸ“š {len(st.session_state.resume_texts)} resumes loaded and ready for analysis")
    with col2:
        if st.button("πŸ—‘οΈ Clear Resumes", type="secondary", help="Clear all loaded resumes to start fresh"):
            st.session_state.resume_texts = []
            st.session_state.file_names = []
            st.session_state.results = []
            st.session_state.current_job_description = ""
            st.rerun()

input_method = st.radio(
    "Choose input method:",
    ["πŸ“ Upload Files", "πŸ—‚οΈ Load from CSV Dataset", "πŸ”— Load from Hugging Face Dataset"]
)

if input_method == "πŸ“ Upload Files":
    uploaded_files = st.file_uploader(
        "Upload resume files",
        type=["pdf", "docx", "txt"],
        accept_multiple_files=True,
        help="Supported formats: PDF, DOCX, TXT"
    )
    
    if uploaded_files:
        with st.spinner(f"πŸ”„ Processing {len(uploaded_files)} files..."):
            resume_texts = []
            file_names = []
            
            for file in uploaded_files:
                file_type = file.name.split('.')[-1].lower()
                
                with tempfile.NamedTemporaryFile(delete=False, suffix=f'.{file_type}') as tmp_file:
                    tmp_file.write(file.getvalue())
                    tmp_path = tmp_file.name
                
                text = screener.extract_text_from_file(tmp_path, file_type)
                if text.strip():
                    resume_texts.append(text)
                    file_names.append(file.name)
                
                os.unlink(tmp_path)
            
            st.session_state.resume_texts = resume_texts
            st.session_state.file_names = file_names
            
        if resume_texts:
            st.success(f"βœ… Successfully processed {len(resume_texts)} resumes")

elif input_method == "πŸ—‚οΈ Load from CSV Dataset":
    csv_file = st.file_uploader("Upload CSV file with resume data", type=["csv"])
    
    if csv_file:
        try:
            df = pd.read_csv(csv_file)
            st.write("**CSV Preview:**")
            st.dataframe(df.head())
            
            text_column = st.selectbox(
                "Select column containing resume text:",
                df.columns.tolist()
            )
            
            name_column = st.selectbox(
                "Select column for candidate names/IDs (optional):",
                ["Use Index"] + df.columns.tolist()
            )
            
            if st.button("πŸš€ Process CSV Data"):
                with st.spinner("πŸ”„ Processing CSV data..."):
                    resume_texts = []
                    file_names = []
                    
                    for idx, row in df.iterrows():
                        text = str(row[text_column])
                        if text and text.strip() and text.lower() != 'nan':
                            resume_texts.append(text)
                            
                            if name_column == "Use Index":
                                file_names.append(f"Resume_{idx}")
                            else:
                                file_names.append(str(row[name_column]))
                    
                    st.session_state.resume_texts = resume_texts
                    st.session_state.file_names = file_names
                
                if resume_texts:
                    st.success(f"βœ… Successfully loaded {len(resume_texts)} resumes from CSV")
                    
        except Exception as e:
            st.error(f"❌ Error processing CSV: {str(e)}")

elif input_method == "πŸ”— Load from Hugging Face Dataset":
    st.markdown("**Popular Resume Datasets:**")
    st.markdown("- `ahmedheakl/resume-atlas`")
    st.markdown("- `InferenceFly/Resume-Dataset`")
    
    col1, col2 = st.columns([2, 1])
    with col1:
        dataset_name = st.text_input(
            "Dataset name:",
            value="ahmedheakl/resume-atlas",
            help="Enter Hugging Face dataset name"
        )
    with col2:
        dataset_split = st.selectbox("Split:", ["train", "test", "validation"], index=0)
    
    if st.button("πŸ”— Load from Hugging Face"):
        try:
            with st.spinner(f"πŸ”„ Loading {dataset_name}..."):
                dataset = load_dataset(dataset_name, split=dataset_split)
                
            st.success(f"βœ… Loaded dataset with {len(dataset)} entries")
            st.write("**Dataset Preview:**")
            
            preview_df = pd.DataFrame(dataset[:5])
            st.dataframe(preview_df)
            
            text_column = st.selectbox(
                "Select column with resume text:",
                dataset.column_names,
                index=dataset.column_names.index('resume_text') if 'resume_text' in dataset.column_names else 0
            )
            
            category_column = None
            if 'category' in dataset.column_names:
                categories = list(set(dataset['category']))
                category_column = st.selectbox(
                    "Filter by category (optional):",
                    ["All"] + categories
                )
            
            max_samples = st.slider("Maximum samples to load:", 10, min(1000, len(dataset)), 100)
            
            if st.button("πŸš€ Process Dataset"):
                with st.spinner("πŸ”„ Processing dataset..."):
                    resume_texts = []
                    file_names = []
                    
                    filtered_dataset = dataset
                    
                    if category_column and category_column != "All":
                        filtered_dataset = dataset.filter(lambda x: x['category'] == category_column)
                    
                    sample_indices = list(range(min(max_samples, len(filtered_dataset))))
                    
                    for idx in sample_indices:
                        item = filtered_dataset[idx]
                        text = str(item[text_column])
                        
                        if text and text.strip() and text.lower() != 'nan':
                            resume_texts.append(text)
                            
                            if 'id' in item:
                                file_names.append(f"Resume_{item['id']}")
                            else:
                                file_names.append(f"Resume_{idx}")
                    
                    st.session_state.resume_texts = resume_texts
                    st.session_state.file_names = file_names
                
                if resume_texts:
                    st.success(f"βœ… Successfully loaded {len(resume_texts)} resumes")
                    
        except Exception as e:
            st.error(f"❌ Error loading dataset: {str(e)}")

# Processing and Results
st.header("πŸ” Step 3: Analyze Resumes")

# First button: Find top K candidates (fast ranking)
col1, col2 = st.columns([1, 1])

with col1:
    if st.button("πŸš€ Advanced Pipeline Analysis", 
                 disabled=not (job_description and st.session_state.resume_texts and 
                              st.session_state.get('embedding_model') and
                              st.session_state.get('cross_encoder') and
                              st.session_state.get('qwen3_1_7b_model') and
                              st.session_state.get('qwen3_1_7b_tokenizer')),
                 type="primary",
                 help="Run the complete 5-stage advanced pipeline"):
        print("--- Advanced Pipeline Analysis Button Clicked ---")
        if len(st.session_state.resume_texts) == 0:
            st.error("❌ Please upload resumes first!")
        elif not job_description.strip():
            st.error("❌ Please enter a job description!")
        else:
            print("[UI Button] Pre-checks passed. Starting spinner and pipeline.")
            with st.spinner("πŸš€ Running Advanced Pipeline Analysis..."):
                st.text("Pipeline Initiated: Starting advanced analysis...")
                try:
                    # Run the advanced pipeline
                    pipeline_results = screener.advanced_pipeline_ranking(
                        st.session_state.resume_texts, job_description
                    )
                    
                    # Prepare results for display
                    results = []
                    
                    for rank, result_data in enumerate(pipeline_results, 1):
                        idx = result_data['index']
                        name = st.session_state.file_names[idx]
                        text = st.session_state.resume_texts[idx]
                        
                        # Extract skills
                        skills = screener.extract_skills(text, job_description)
                        
                        results.append({
                            'rank': rank,
                            'name': name,
                            'final_score': result_data['final_score'],
                            'cross_encoder_score': result_data['cross_encoder_score'],
                            'bm25_score': result_data['bm25_score'],
                            'intent_score': result_data['intent_score'],
                            'skills': skills,
                            'text': text,
                            'text_preview': text[:500] + "..." if len(text) > 500 else text
                        })
                    
                    # Store in session state
                    st.session_state.results = results
                    st.session_state.current_job_description = job_description
                    
                    st.success(f"πŸš€ Advanced pipeline complete! Found top {len(st.session_state.results)} candidates.")
                    st.text("Displaying Top Candidates...")
                    
                except Exception as e:
                    st.error(f"❌ Error during analysis: {str(e)}")

# Display Results
if st.session_state.results:
    st.header("πŸ† Top Candidates")
    
    # Create tabs for different views
    tab1, tab2, tab3 = st.tabs(["πŸ“Š Summary", "πŸ“‹ Detailed Analysis", "πŸ“ˆ Visualizations"])
    
    with tab1:
        # Create summary dataframe with new scoring system
        summary_data = []
        for result in st.session_state.results:
            # Map intent score to text
            intent_text = "Yes" if result['intent_score'] == 0.3 else "Maybe" if result['intent_score'] == 0.1 else "No"
            
            summary_data.append({
                "Rank": result['rank'],
                "Candidate": result['name'],
                "Final Score": f"{result['final_score']:.2f}",
                "Cross-Encoder": f"{result['cross_encoder_score']:.2f}",
                "BM25": f"{result['bm25_score']:.2f}",
                "Intent": f"{intent_text} ({result['intent_score']:.1f})",
                "Top Skills": ", ".join(result['skills'][:5])
            })
        
        summary_df = pd.DataFrame(summary_data)
        
        # Style the dataframe
        def color_scores(val):
            if isinstance(val, str) and any(char.isdigit() for char in val):
                try:
                    # Extract numeric value
                    numeric_val = float(''.join(c for c in val if c.isdigit() or c == '.'))
                    if 'Final Score' in val or numeric_val >= 1.0:
                        if numeric_val >= 1.2:
                            return 'background-color: #d4edda'
                        elif numeric_val >= 1.0:
                            return 'background-color: #fff3cd'
                        else:
                            return 'background-color: #f8d7da'
                    else:
                        if numeric_val >= 0.7:
                            return 'background-color: #d4edda'
                        elif numeric_val >= 0.5:
                            return 'background-color: #fff3cd'
                        else:
                            return 'background-color: #f8d7da'
                except:
                    pass
            return ''
        
        styled_df = summary_df.style.applymap(color_scores, subset=['Final Score', 'Cross-Encoder', 'BM25'])
        st.dataframe(styled_df, use_container_width=True)
        
        # Download link
        detailed_data = []
        for result in st.session_state.results:
            intent_text = "Yes" if result['intent_score'] == 0.3 else "Maybe" if result['intent_score'] == 0.1 else "No"
            
            detailed_data.append({
                "Rank": result['rank'],
                "Candidate": result['name'],
                "Final_Score": result['final_score'],
                "Cross_Encoder_Score": result['cross_encoder_score'],
                "BM25_Score": result['bm25_score'],
                "Intent_Score": result['intent_score'],
                "Intent_Analysis": intent_text,
                "Skills": "; ".join(result['skills']),
                "Resume_Preview": result['text_preview']
            })
        
        download_df = pd.DataFrame(detailed_data)
        st.markdown(create_download_link(download_df), unsafe_allow_html=True)
    
    with tab2:
        # Detailed results with new scoring breakdown
        for result in st.session_state.results:
            intent_text = "Yes" if result['intent_score'] == 0.3 else "Maybe" if result['intent_score'] == 0.1 else "No"
            
            with st.expander(f"#{result['rank']}: {result['name']} (Final Score: {result['final_score']:.2f})"):
                col1, col2 = st.columns([1, 2])
                
                with col1:
                    st.metric("πŸ† Final Score", f"{result['final_score']:.2f}")
                    
                    st.write("**πŸ“Š Score Breakdown:**")
                    st.metric("🎯 Cross-Encoder", f"{result['cross_encoder_score']:.2f}", help="Semantic relevance (0-1)")
                    st.metric("πŸ”€ BM25 Keywords", f"{result['bm25_score']:.2f}", help="Keyword matching (0.1-0.2)")
                    st.metric("πŸ€– Intent Analysis", f"{intent_text} ({result['intent_score']:.1f})", help="Job seeking likelihood (0-0.3)")
                    
                    st.write("**🎯 Matching Skills:**")
                    skills_per_column = 5
                    skill_cols = st.columns(2)
                    for idx, skill in enumerate(result['skills'][:10]):
                        with skill_cols[idx % 2]:
                            st.write(f"β€’ {skill}")
                
                with col2:
                    st.write("**πŸ“„ Resume Preview:**")
                    st.text_area("", result['text_preview'], height=200, disabled=True, key=f"preview_{result['rank']}")
    
    with tab3:
        # Score visualization
        if len(st.session_state.results) > 1:
            # Bar chart
            st.subheader("Score Comparison")
            
            chart_data = pd.DataFrame({
                'Candidate': [r['name'][:20] + '...' if len(r['name']) > 20 else r['name'] 
                             for r in st.session_state.results],
                'Final Score': [r['final_score'] for r in st.session_state.results],
                'Cross-Encoder': [r['cross_encoder_score'] for r in st.session_state.results],
                'BM25': [r['bm25_score'] for r in st.session_state.results],
                'Intent': [r['intent_score'] for r in st.session_state.results]
            })
            
            st.bar_chart(chart_data.set_index('Candidate'))
            
            # Score distribution
            col1, col2 = st.columns(2)
            
            with col1:
                st.subheader("Score Distribution")
                score_ranges = {
                    'Excellent (β‰₯1.2)': sum(1 for r in st.session_state.results if r['final_score'] >= 1.2),
                    'Good (1.0-1.2)': sum(1 for r in st.session_state.results if 1.0 <= r['final_score'] < 1.2),
                    'Fair (0.8-1.0)': sum(1 for r in st.session_state.results if 0.8 <= r['final_score'] < 1.0),
                    'Poor (<0.8)': sum(1 for r in st.session_state.results if r['final_score'] < 0.8),
                }
                
                dist_df = pd.DataFrame({
                    'Range': score_ranges.keys(),
                    'Count': score_ranges.values()
                })
                st.bar_chart(dist_df.set_index('Range'))
            
            with col2:
                st.subheader("Average Scores")
                avg_final = np.mean([r['final_score'] for r in st.session_state.results])
                avg_cross = np.mean([r['cross_encoder_score'] for r in st.session_state.results])
                avg_bm25 = np.mean([r['bm25_score'] for r in st.session_state.results])
                avg_intent = np.mean([r['intent_score'] for r in st.session_state.results])
                
                st.metric("Average Final Score", f"{avg_final:.2f}")
                st.metric("Average Cross-Encoder", f"{avg_cross:.2f}")
                st.metric("Average BM25", f"{avg_bm25:.2f}")
                st.metric("Average Intent", f"{avg_intent:.2f}")

# Memory cleanup
st.markdown("---")
st.subheader("🧹 Reset Application")
col1, col2, col3 = st.columns([1, 1, 3])
with col1:
    if st.button("πŸ—‘οΈ Clear Resumes Only", type="secondary", help="Clear only the loaded resumes"):
        st.session_state.resume_texts = []
        st.session_state.file_names = []
        st.session_state.results = []
        st.session_state.current_job_description = ""
        st.success("βœ… Resumes cleared!")
        st.rerun()

with col2:
    if st.button("🧹 Clear Everything", type="primary", help="Clear all data and free memory"):
        st.session_state.resume_texts = []
        st.session_state.file_names = []
        st.session_state.results = []
        st.session_state.current_job_description = ""
        
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        gc.collect()
        st.success("βœ… Everything cleared!")
        st.rerun()

# Footer
st.markdown("---")
st.markdown(
    """
    <div style='text-align: center; color: #666;'>
        πŸš€ Powered by BAAI/bge-large-en-v1.5 & Qwen3-1.7B | Built with Streamlit
    </div>
    """, 
    unsafe_allow_html=True
)