File size: 43,589 Bytes
a928595 556ee06 8c40ab2 d60989a 1d59f84 6ff5e82 d60989a 6ff5e82 6433e25 1d59f84 d60989a a928595 d60989a 7044586 6ff5e82 d60989a 7044586 70c101d c71ed9b 70c101d c71ed9b 70c101d c71ed9b 70c101d c71ed9b d60989a 6ff5e82 d60989a c71ed9b 1d59f84 c71ed9b 53cdf96 d60989a 1d59f84 c71ed9b 1d59f84 baade64 1d59f84 7044586 c71ed9b 70c101d d60989a 7044586 c71ed9b 1d59f84 6ff5e82 d60989a 6ff5e82 d60989a 7044586 6ff5e82 1d59f84 6ff5e82 d60989a 7044586 6ff5e82 d60989a 6ff5e82 d60989a 6ff5e82 d60989a 7044586 d60989a 6ff5e82 1d59f84 d60989a 556ee06 d60989a 556ee06 d60989a 6ff5e82 d60989a 556ee06 d60989a 1d59f84 6ff5e82 53cdf96 6ff5e82 53cdf96 6ff5e82 53cdf96 6ff5e82 1d59f84 6ff5e82 53cdf96 6ff5e82 1d59f84 53cdf96 6ff5e82 53cdf96 6ff5e82 1d59f84 6ff5e82 53cdf96 6ff5e82 53cdf96 6ff5e82 1d59f84 6ff5e82 1d59f84 6ff5e82 1d59f84 53cdf96 6ff5e82 1d59f84 6ff5e82 53cdf96 6ff5e82 53cdf96 6ff5e82 53cdf96 6ff5e82 53cdf96 6ff5e82 53cdf96 6ff5e82 1d59f84 6ff5e82 d60989a 6ff5e82 1d59f84 70c101d 1d59f84 baade64 1d59f84 baade64 1d59f84 baade64 1d59f84 6ff5e82 1d59f84 baade64 1d59f84 baade64 1d59f84 6ff5e82 d60989a 6ff5e82 d60989a 1d59f84 d60989a 1d59f84 d60989a 1d59f84 6ff5e82 1d59f84 c1efc08 1d59f84 d60989a 1d59f84 c1efc08 1d59f84 6ff5e82 1d59f84 6ff5e82 1d59f84 7044586 d60989a 7044586 6ff5e82 baade64 6ff5e82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 |
import streamlit as st
import pandas as pd
import numpy as np
import torch
import nltk
import os
import tempfile
import base64
from rank_bm25 import BM25Okapi
from sentence_transformers import SentenceTransformer, CrossEncoder
from nltk.tokenize import word_tokenize
import pdfplumber
import PyPDF2
from docx import Document
import csv
from datasets import load_dataset
import gc
from transformers import AutoModelForCausalLM, AutoTokenizer
import time
import faiss
import re
# Download NLTK resources
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
# Set page configuration
st.set_page_config(
page_title="AI Resume Screener",
page_icon="π―",
layout="wide",
initial_sidebar_state="expanded"
)
# --- Global Device and Model Loading Section ---
# Initialize session state keys for all models, their loading status/errors, and app data
keys_to_initialize = {
'embedding_model': None, 'embedding_model_error': None,
'cross_encoder': None, 'cross_encoder_error': None,
'qwen3_1_7b_tokenizer': None, 'qwen3_1_7b_tokenizer_error': None,
'qwen3_1_7b_model': None, 'qwen3_1_7b_model_error': None,
'results': [], 'resume_texts': [], 'file_names': [], 'current_job_description': ""
# Add any other app-specific session state keys here if needed
}
for key, default_value in keys_to_initialize.items():
if key not in st.session_state:
st.session_state[key] = default_value
# Load Embedding Model (BAAI/bge-large-en-v1.5)
if st.session_state.embedding_model is None and st.session_state.embedding_model_error is None:
print("[Global Init] Attempting to load Embedding Model (BAAI/bge-large-en-v1.5) with device_map='auto'...")
try:
st.session_state.embedding_model = SentenceTransformer(
'BAAI/bge-large-en-v1.5',
device_map="auto"
)
print(f"[Global Init] Embedding Model (BAAI/bge-large-en-v1.5) LOADED with device_map='auto'.")
except Exception as e:
if "device_map" in str(e).lower() and "unexpected keyword argument" in str(e).lower():
print("β οΈ [Global Init] device_map='auto' not supported for SentenceTransformer. Falling back to default device handling.")
try:
st.session_state.embedding_model = SentenceTransformer('BAAI/bge-large-en-v1.5')
print(f"[Global Init] Embedding Model (BAAI/bge-large-en-v1.5) LOADED (fallback device handling).")
except Exception as e_fallback:
error_msg = f"Failed to load Embedding Model (fallback): {str(e_fallback)}"
print(f"β [Global Init] {error_msg}")
st.session_state.embedding_model_error = error_msg
else:
error_msg = f"Failed to load Embedding Model: {str(e)}"
print(f"β [Global Init] {error_msg}")
st.session_state.embedding_model_error = error_msg
# Load Cross-Encoder Model (ms-marco-MiniLM-L6-v2)
if st.session_state.cross_encoder is None and st.session_state.cross_encoder_error is None:
print("[Global Init] Attempting to load Cross-Encoder Model (ms-marco-MiniLM-L6-v2) with device_map='auto'...")
try:
st.session_state.cross_encoder = CrossEncoder(
'cross-encoder/ms-marco-MiniLM-L6-v2',
device_map="auto"
)
print(f"[Global Init] Cross-Encoder Model (ms-marco-MiniLM-L6-v2) LOADED with device_map='auto'.")
except Exception as e:
if "device_map" in str(e).lower() and "unexpected keyword argument" in str(e).lower():
print("β οΈ [Global Init] device_map='auto' not supported for CrossEncoder. Falling back to default device handling.")
try:
st.session_state.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2')
print(f"[Global Init] Cross-Encoder Model (ms-marco-MiniLM-L6-v2) LOADED (fallback device handling).")
except Exception as e_fallback:
error_msg = f"Failed to load Cross-Encoder Model (fallback): {str(e_fallback)}"
print(f"β [Global Init] {error_msg}")
st.session_state.cross_encoder_error = error_msg
else:
error_msg = f"Failed to load Cross-Encoder Model: {str(e)}"
print(f"β [Global Init] {error_msg}")
st.session_state.cross_encoder_error = error_msg
# Load Qwen3-1.7B Tokenizer
if st.session_state.qwen3_1_7b_tokenizer is None and st.session_state.qwen3_1_7b_tokenizer_error is None:
print("[Global Init] Loading Qwen3-1.7B Tokenizer...")
try:
st.session_state.qwen3_1_7b_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-1.7B")
print("[Global Init] Qwen3-1.7B Tokenizer Loaded.")
except Exception as e:
error_msg = f"Failed to load Qwen3-1.7B Tokenizer: {str(e)}"
print(f"β [Global Init] {error_msg}")
st.session_state.qwen3_1_7b_tokenizer_error = error_msg
# Load Qwen3-1.7B Model
if st.session_state.qwen3_1_7b_model is None and st.session_state.qwen3_1_7b_model_error is None:
print("[Global Init] Loading Qwen3-1.7B Model (attempting with device_map='auto')...")
try:
st.session_state.qwen3_1_7b_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen3-1.7B",
torch_dtype="auto",
device_map="auto",
trust_remote_code=True # if required by this specific model
)
print("[Global Init] Qwen3-1.7B Model Loaded with device_map='auto'.")
except Exception as e_dev_map:
print(f"β οΈ [Global Init] Failed to load Qwen3-1.7B with device_map='auto': {str(e_dev_map)}")
print("[Global Init] Retrying Qwen3-1.7B load without device_map (will use default single device)...")
try:
st.session_state.qwen3_1_7b_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen3-1.7B",
torch_dtype="auto",
# No device_map here, let Hugging Face decide or use CUDA if available
trust_remote_code=True # if required
)
print("[Global Init] Qwen3-1.7B Model Loaded (fallback device handling).")
except Exception as e_fallback:
error_msg = f"Failed to load Qwen3-1.7B Model (fallback): {str(e_fallback)}"
print(f"β [Global Init] {error_msg}")
st.session_state.qwen3_1_7b_model_error = error_msg
# --- End of Global Model Loading Section ---
# --- Class Definitions and Helper Functions ---
def generate_qwen3_response(prompt, tokenizer, model, max_new_tokens=200):
# ... (implementation of generate_qwen3_response)
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # As per Qwen3-1.7B docs for thinking mode
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=max_new_tokens
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
response = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n")
return response
class ResumeScreener: # Ensure this class definition is BEFORE it's instantiated
def __init__(self):
# ... (init logic as before, referencing st.session_state for models)
print("[ResumeScreener] Initializing with references to globally loaded models...")
self.embedding_model = st.session_state.get('embedding_model')
self.cross_encoder = st.session_state.get('cross_encoder')
if self.embedding_model:
print("[ResumeScreener] Embedding model reference set.")
else:
print("[ResumeScreener] Embedding model not available (check loading errors).")
if self.cross_encoder:
print("[ResumeScreener] Cross-encoder model reference set.")
else:
print("[ResumeScreener] Cross-encoder model not available (check loading errors).")
print("[ResumeScreener] Initialization complete.")
# ... (all other methods of ResumeScreener: extract_text_from_file, get_embedding,
# calculate_bm25_scores, advanced_pipeline_ranking, faiss_recall, cross_encoder_rerank,
# add_bm25_scores, add_intent_scores, analyze_intent, calculate_final_scores, extract_skills)
# Make sure all methods are correctly indented within the class
def extract_text_from_file(self, file_path, file_type):
# ... (implementation)
try:
if file_type == "pdf":
with open(file_path, 'rb') as file:
with pdfplumber.open(file) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text() or ""
if not text.strip():
file.seek(0)
reader = PyPDF2.PdfReader(file)
text = ""
for page_num in range(len(reader.pages)):
text += reader.pages[page_num].extract_text() or ""
return text
elif file_type == "docx":
doc = Document(file_path)
return " ".join([paragraph.text for paragraph in doc.paragraphs])
elif file_type == "txt":
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
elif file_type == "csv":
with open(file_path, 'r', encoding='utf-8') as file:
csv_reader = csv.reader(file)
return " ".join([" ".join(row) for row in csv_reader])
except Exception as e:
st.error(f"Error extracting text from {file_path}: {str(e)}")
return ""
def get_embedding(self, text):
if self.embedding_model is None:
st.error("Embedding model is not available!")
return np.zeros(1024)
try:
if len(text) < 500:
text = "Represent this sentence for searching relevant passages: " + text
text = text[:8192] if text else ""
embedding = self.embedding_model.encode(text, convert_to_numpy=True, normalize_embeddings=True)
return embedding
except Exception as e:
st.error(f"Error generating embedding: {str(e)}")
return np.zeros(1024)
def calculate_bm25_scores(self, resume_texts, job_description):
try:
job_tokens = word_tokenize(job_description.lower())
corpus = [word_tokenize(text.lower()) for text in resume_texts if text and text.strip()]
if not corpus:
return [0.0] * len(resume_texts)
bm25 = BM25Okapi(corpus)
scores = bm25.get_scores(job_tokens)
return scores.tolist()
except Exception as e:
st.error(f"Error calculating BM25 scores: {str(e)}")
return [0.0] * len(resume_texts)
def advanced_pipeline_ranking(self, resume_texts, job_description):
print("[Pipeline] Advanced Pipeline Ranking started.")
if not resume_texts:
return []
st.info("π Stage 1: FAISS Recall - Finding top candidates...")
top_50_indices = self.faiss_recall(resume_texts, job_description, top_k=50)
st.info("π― Stage 2: Cross-Encoder Re-ranking - Selecting top candidates...")
top_20_results = self.cross_encoder_rerank(resume_texts, job_description, top_50_indices, top_k=20)
st.info("π€ Stage 3: BM25 Keyword Matching...")
top_20_with_bm25 = self.add_bm25_scores(resume_texts, job_description, top_20_results)
st.info("π€ Stage 4: LLM Intent Analysis (Qwen3-1.7B)...")
top_20_with_intent = self.add_intent_scores(resume_texts, job_description, top_20_with_bm25)
st.info("π Stage 5: Final Combined Ranking...")
final_results = self.calculate_final_scores(top_20_with_intent)
print("[Pipeline] Advanced Pipeline Ranking finished.")
return final_results[:st.session_state.get('top_k', 5)]
def faiss_recall(self, resume_texts, job_description, top_k=50):
print("[faiss_recall] Method started.")
st.text("FAISS Recall: Embedding job description...")
job_embedding = self.get_embedding(job_description)
st.text(f"FAISS Recall: Embedding {len(resume_texts)} resumes...")
resume_embeddings = []
progress_bar = st.progress(0)
for i, text in enumerate(resume_texts):
if text:
embedding = self.embedding_model.encode(text[:8192], convert_to_numpy=True, normalize_embeddings=True)
resume_embeddings.append(embedding)
else:
resume_embeddings.append(np.zeros(1024))
progress_bar.progress((i + 1) / len(resume_texts))
progress_bar.empty()
resume_embeddings_np = np.array(resume_embeddings).astype('float32') # Renamed variable
if resume_embeddings_np.ndim == 1: # Handle case of single resume
resume_embeddings_np = resume_embeddings_np.reshape(1, -1)
if resume_embeddings_np.size == 0:
print("[faiss_recall] No resume embeddings to add to FAISS index.")
return [] # Or handle error appropriately
dimension = resume_embeddings_np.shape[1]
index = faiss.IndexFlatIP(dimension)
index.add(resume_embeddings_np)
job_embedding_np = job_embedding.reshape(1, -1).astype('float32') # Renamed variable
scores, indices = index.search(job_embedding_np, min(top_k, len(resume_texts)))
return indices[0].tolist()
def cross_encoder_rerank(self, resume_texts, job_description, top_50_indices, top_k=20):
print("[cross_encoder_rerank] Method started.")
if not self.cross_encoder:
st.error("Cross-encoder model is not available!")
return [(idx, 0.0) for idx in top_50_indices[:top_k]]
pairs = []
valid_indices = []
for idx in top_50_indices:
if idx < len(resume_texts) and resume_texts[idx]:
job_snippet = job_description[:512]
resume_snippet = resume_texts[idx][:512]
pairs.append([job_snippet, resume_snippet])
valid_indices.append(idx)
if not pairs:
return [(idx, 0.0) for idx in top_50_indices[:top_k]]
st.text(f"Cross-Encoder: Preparing {len(pairs)} pairs for re-ranking...")
scores = []
batch_size = 8
progress_bar = st.progress(0)
for i in range(0, len(pairs), batch_size):
batch = pairs[i:i+batch_size]
batch_scores = self.cross_encoder.predict(batch)
scores.extend(batch_scores)
progress_bar.progress(min(1.0, (i + batch_size) / len(pairs)))
progress_bar.empty()
indexed_scores = list(zip(valid_indices, scores))
indexed_scores.sort(key=lambda x: x[1], reverse=True)
return indexed_scores[:top_k]
def add_bm25_scores(self, resume_texts, job_description, top_20_results):
st.text("BM25: Calculating keyword scores...")
top_20_texts = [resume_texts[idx] for idx, _ in top_20_results]
bm25_scores_raw = self.calculate_bm25_scores(top_20_texts, job_description)
if bm25_scores_raw and max(bm25_scores_raw) > 0:
max_bm25, min_bm25 = max(bm25_scores_raw), min(bm25_scores_raw)
if max_bm25 > min_bm25:
normalized_bm25 = [0.1 + 0.1 * (s - min_bm25) / (max_bm25 - min_bm25) for s in bm25_scores_raw]
else:
normalized_bm25 = [0.15] * len(bm25_scores_raw)
else:
normalized_bm25 = [0.15] * len(top_20_results)
results_with_bm25 = []
for i, (idx, cross_score) in enumerate(top_20_results):
results_with_bm25.append((idx, cross_score, normalized_bm25[i] if i < len(normalized_bm25) else 0.15))
return results_with_bm25
def add_intent_scores(self, resume_texts, job_description, top_20_with_bm25):
st.text(f"LLM Intent: Analyzing intent for {len(top_20_with_bm25)} candidates (Qwen3-1.7B)...")
results_with_intent = []
progress_bar = st.progress(0)
for i, (idx, cross_score, bm25_score) in enumerate(top_20_with_bm25):
intent_score = self.analyze_intent(resume_texts[idx], job_description)
results_with_intent.append((idx, cross_score, bm25_score, intent_score))
progress_bar.progress((i + 1) / len(top_20_with_bm25))
progress_bar.empty()
return results_with_intent
def analyze_intent(self, resume_text, job_description):
print(f"[analyze_intent] Analyzing intent for one resume (Qwen3-1.7B)...")
st.text("LLM Intent: Analyzing intent (Qwen3-1.7B)...")
try:
resume_snippet = resume_text[:15000]
job_snippet = job_description[:5000]
prompt = f\"\"\"You are given a job description and a candidate's resume... (rest of prompt)\"\"\" # Ensure f-string is correct
# ... (rest of analyze_intent, using st.session_state.qwen3_1_7b_tokenizer and _model)
response_text = generate_qwen3_response(
prompt,
st.session_state.qwen3_1_7b_tokenizer,
st.session_state.qwen3_1_7b_model,
max_new_tokens=20000
)
# ... (parsing logic for response_text) ...
thinking_content = "No detailed thought process extracted."
intent_decision_part = response_text
think_start_tag = "<think>"
think_end_tag = "</think>"
start_index = response_text.find(think_start_tag)
end_index = response_text.rfind(think_end_tag)
if start_index != -1 and end_index != -1 and start_index < end_index:
thinking_content = response_text[start_index + len(think_start_tag):end_index].strip()
intent_decision_part = response_text[end_index + len(think_end_tag):].strip()
response_lower = intent_decision_part.lower()
intent_score = 0.1
if 'intent: yes' in response_lower or 'intent:yes' in response_lower:
intent_score = 0.3
elif 'intent: no' in response_lower or 'intent:no' in response_lower:
intent_score = 0.0
return intent_score
except Exception as e:
st.warning(f"Error analyzing intent with Qwen3-1.7B: {str(e)}")
return 0.1
def calculate_final_scores(self, results_with_all_scores):
final_results = []
for idx, cross_score, bm25_score, intent_score in results_with_all_scores:
normalized_cross = max(0, min(1, cross_score))
final_score = normalized_cross + bm25_score + intent_score
final_results.append({
'index': idx, 'cross_encoder_score': normalized_cross,
'bm25_score': bm25_score, 'intent_score': intent_score,
'final_score': final_score
})
final_results.sort(key=lambda x: x['final_score'], reverse=True)
return final_results
def extract_skills(self, text, job_description):
# ... (implementation)
if not text: return []
common_skills = ["python", "java", "javascript", "react", "angular", "vue", "node.js", "express", "django", "flask", "spring", "sql", "nosql", "html", "css", "aws", "azure", "gcp", "docker", "kubernetes", "jenkins", "git", "github", "agile", "scrum", "jira", "ci/cd", "devops", "microservices", "rest", "api", "machine learning", "deep learning", "data science", "artificial intelligence", "tensorflow", "pytorch", "keras", "scikit-learn", "pandas", "numpy", "matplotlib", "seaborn", "jupyter", "r", "sas", "spss", "tableau", "powerbi", "excel", "mysql", "postgresql", "mongodb", "redis", "elasticsearch", "kafka", "rabbitmq", "spark", "hadoop", "hive", "airflow", "linux", "unix"]
job_words = set(word.lower() for word in word_tokenize(job_description) if len(word) > 2)
found_skills = []
text_lower = text.lower()
for skill in common_skills:
if skill in text_lower and any(skill in job_word for job_word in job_words):
found_skills.append(skill)
for word in job_words:
if len(word) > 3 and word in text_lower and word not in found_skills and word not in ['with', 'have', 'that', 'this', 'from', 'what', 'when', 'where']:
found_skills.append(word)
return list(set(found_skills))[:15]
def create_download_link(df, filename="resume_screening_results.csv"):
# ... (implementation)
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
return f'<a href="data:file/csv;base64,{b64}" download="{filename}" class="download-btn">π₯ Download Results CSV</a>'
# --- Sidebar Configuration (Must be after global model loading and class defs if it uses them) ---
with st.sidebar:
st.title("βοΈ Configuration")
# Advanced options
st.subheader("Advanced Options")
# Ensure top_k is in session_state if it's used by advanced_pipeline_ranking before button press
if 'top_k' not in st.session_state:
st.session_state.top_k = 5 # Default value
st.session_state.top_k = st.selectbox("Number of results to display", [1,2,3,4,5], index=st.session_state.top_k-1, key="top_k_selector")
# LLM Settings
st.subheader("LLM Settings")
# use_llm_explanations = st.checkbox("Generate AI Explanations", value=True) # This was removed earlier
# if use_llm_explanations:
# hf_token = st.text_input("Hugging Face Token (optional)", type="password",
# help="Enter your HF token for better rate limits")
st.markdown("---")
st.markdown("### π€ Advanced Pipeline")
st.markdown("- **Stage 1**: FAISS Recall (Top 50)")
st.markdown("- **Stage 2**: Cross-Encoder Re-ranking (Top 20)")
st.markdown("- **Stage 3**: BM25 Keyword Matching")
st.markdown("- **Stage 4**: LLM Intent Analysis (Qwen3-1.7B)")
st.markdown("- **Final**: Combined Scoring") # Updated this line
st.markdown("### π Models Used")
st.markdown("- **Embedding**: BAAI/bge-large-en-v1.5")
st.markdown("- **Cross-Encoder**: ms-marco-MiniLM-L6-v2")
st.markdown("- **LLM**: Qwen/Qwen3-1.7B")
st.markdown("### π Scoring Formula")
st.markdown("**Final Score = Cross-Encoder (0-1) + BM25 (0.1-0.2) + Intent (0-0.3)**")
# --- Main App Interface (Must be after global model loading and class defs) ---
st.title("π― AI-Powered Resume Screener")
# ... (Model Loading Status display as before)
# ...
st.markdown("*Find the perfect candidates using BAAI/bge-large-en-v1.5 embeddings and Qwen3-1.7B for intent analysis*")
st.subheader("π€ Model Loading Status")
col1, col2 = st.columns(2)
with col1:
if st.session_state.get('embedding_model_error'):
st.error(f"Embedding Model: {st.session_state.embedding_model_error}")
elif st.session_state.get('embedding_model'):
st.success("β
Embedding Model (BAAI/bge-large-en-v1.5) loaded.")
else:
st.warning("β³ Embedding Model loading or not found (check console).")
if st.session_state.get('cross_encoder_error'):
st.error(f"Cross-Encoder Model: {st.session_state.cross_encoder_error}")
elif st.session_state.get('cross_encoder'):
st.success("β
Cross-Encoder Model (ms-marco-MiniLM-L6-v2) loaded.")
else:
st.warning("β³ Cross-Encoder Model loading or not found (check console).")
with col2:
if st.session_state.get('qwen3_1_7b_tokenizer_error'):
st.error(f"Qwen3-1.7B Tokenizer: {st.session_state.qwen3_1_7b_tokenizer_error}")
elif st.session_state.get('qwen3_1_7b_tokenizer'):
st.success("β
Qwen3-1.7B Tokenizer loaded.")
else:
st.warning("β³ Qwen3-1.7B Tokenizer loading or not found (check console).")
if st.session_state.get('qwen3_1_7b_model_error'):
st.error(f"Qwen3-1.7B Model: {st.session_state.qwen3_1_7b_model_error}")
elif st.session_state.get('qwen3_1_7b_model'):
st.success("β
Qwen3-1.7B Model loaded.")
else:
st.warning("β³ Qwen3-1.7B Model loading or not found (check console).")
st.markdown("---")
# Initialize screener (This line was causing NameError, ensure class is defined above)
screener = ResumeScreener()
# Job Description Input
st.header("π Step 1: Enter Job Description")
job_description = st.text_area(
"Enter the complete job description or requirements:",
height=150,
placeholder="Paste the job description here, including required skills, experience, and qualifications..."
)
# Resume Input Options
st.header("π Step 2: Upload Resumes")
# Show loaded resumes indicator
if st.session_state.resume_texts:
col1, col2 = st.columns([3, 1])
with col1:
st.info(f"π {len(st.session_state.resume_texts)} resumes loaded and ready for analysis")
with col2:
if st.button("ποΈ Clear Resumes", type="secondary", help="Clear all loaded resumes to start fresh"):
st.session_state.resume_texts = []
st.session_state.file_names = []
st.session_state.results = []
st.session_state.current_job_description = ""
st.rerun()
input_method = st.radio(
"Choose input method:",
["π Upload Files", "ποΈ Load from CSV Dataset", "π Load from Hugging Face Dataset"]
)
if input_method == "π Upload Files":
uploaded_files = st.file_uploader(
"Upload resume files",
type=["pdf", "docx", "txt"],
accept_multiple_files=True,
help="Supported formats: PDF, DOCX, TXT"
)
if uploaded_files:
with st.spinner(f"π Processing {len(uploaded_files)} files..."):
resume_texts = []
file_names = []
for file in uploaded_files:
file_type = file.name.split('.')[-1].lower()
with tempfile.NamedTemporaryFile(delete=False, suffix=f'.{file_type}') as tmp_file:
tmp_file.write(file.getvalue())
tmp_path = tmp_file.name
text = screener.extract_text_from_file(tmp_path, file_type)
if text.strip():
resume_texts.append(text)
file_names.append(file.name)
os.unlink(tmp_path)
st.session_state.resume_texts = resume_texts
st.session_state.file_names = file_names
if resume_texts:
st.success(f"β
Successfully processed {len(resume_texts)} resumes")
elif input_method == "ποΈ Load from CSV Dataset":
csv_file = st.file_uploader("Upload CSV file with resume data", type=["csv"])
if csv_file:
try:
df = pd.read_csv(csv_file)
st.write("**CSV Preview:**")
st.dataframe(df.head())
text_column = st.selectbox(
"Select column containing resume text:",
df.columns.tolist()
)
name_column = st.selectbox(
"Select column for candidate names/IDs (optional):",
["Use Index"] + df.columns.tolist()
)
if st.button("π Process CSV Data"):
with st.spinner("π Processing CSV data..."):
resume_texts = []
file_names = []
for idx, row in df.iterrows():
text = str(row[text_column])
if text and text.strip() and text.lower() != 'nan':
resume_texts.append(text)
if name_column == "Use Index":
file_names.append(f"Resume_{idx}")
else:
file_names.append(str(row[name_column]))
st.session_state.resume_texts = resume_texts
st.session_state.file_names = file_names
if resume_texts:
st.success(f"β
Successfully loaded {len(resume_texts)} resumes from CSV")
except Exception as e:
st.error(f"β Error processing CSV: {str(e)}")
elif input_method == "π Load from Hugging Face Dataset":
st.markdown("**Popular Resume Datasets:**")
st.markdown("- `ahmedheakl/resume-atlas`")
st.markdown("- `InferenceFly/Resume-Dataset`")
col1, col2 = st.columns([2, 1])
with col1:
dataset_name = st.text_input(
"Dataset name:",
value="ahmedheakl/resume-atlas",
help="Enter Hugging Face dataset name"
)
with col2:
dataset_split = st.selectbox("Split:", ["train", "test", "validation"], index=0)
if st.button("π Load from Hugging Face"):
try:
with st.spinner(f"π Loading {dataset_name}..."):
dataset = load_dataset(dataset_name, split=dataset_split)
st.success(f"β
Loaded dataset with {len(dataset)} entries")
st.write("**Dataset Preview:**")
preview_df = pd.DataFrame(dataset[:5])
st.dataframe(preview_df)
text_column = st.selectbox(
"Select column with resume text:",
dataset.column_names,
index=dataset.column_names.index('resume_text') if 'resume_text' in dataset.column_names else 0
)
category_column = None
if 'category' in dataset.column_names:
categories = list(set(dataset['category']))
category_column = st.selectbox(
"Filter by category (optional):",
["All"] + categories
)
max_samples = st.slider("Maximum samples to load:", 10, min(1000, len(dataset)), 100)
if st.button("π Process Dataset"):
with st.spinner("π Processing dataset..."):
resume_texts = []
file_names = []
filtered_dataset = dataset
if category_column and category_column != "All":
filtered_dataset = dataset.filter(lambda x: x['category'] == category_column)
sample_indices = list(range(min(max_samples, len(filtered_dataset))))
for idx in sample_indices:
item = filtered_dataset[idx]
text = str(item[text_column])
if text and text.strip() and text.lower() != 'nan':
resume_texts.append(text)
if 'id' in item:
file_names.append(f"Resume_{item['id']}")
else:
file_names.append(f"Resume_{idx}")
st.session_state.resume_texts = resume_texts
st.session_state.file_names = file_names
if resume_texts:
st.success(f"β
Successfully loaded {len(resume_texts)} resumes")
except Exception as e:
st.error(f"β Error loading dataset: {str(e)}")
# Processing and Results
st.header("π Step 3: Analyze Resumes")
# First button: Find top K candidates (fast ranking)
col1, col2 = st.columns([1, 1])
with col1:
if st.button("π Advanced Pipeline Analysis",
disabled=not (job_description and st.session_state.resume_texts and
st.session_state.get('embedding_model') and
st.session_state.get('cross_encoder') and
st.session_state.get('qwen3_1_7b_model') and
st.session_state.get('qwen3_1_7b_tokenizer')),
type="primary",
help="Run the complete 5-stage advanced pipeline"):
print("--- Advanced Pipeline Analysis Button Clicked ---")
if len(st.session_state.resume_texts) == 0:
st.error("β Please upload resumes first!")
elif not job_description.strip():
st.error("β Please enter a job description!")
else:
print("[UI Button] Pre-checks passed. Starting spinner and pipeline.")
with st.spinner("π Running Advanced Pipeline Analysis..."):
st.text("Pipeline Initiated: Starting advanced analysis...")
try:
# Run the advanced pipeline
pipeline_results = screener.advanced_pipeline_ranking(
st.session_state.resume_texts, job_description
)
# Prepare results for display
results = []
for rank, result_data in enumerate(pipeline_results, 1):
idx = result_data['index']
name = st.session_state.file_names[idx]
text = st.session_state.resume_texts[idx]
# Extract skills
skills = screener.extract_skills(text, job_description)
results.append({
'rank': rank,
'name': name,
'final_score': result_data['final_score'],
'cross_encoder_score': result_data['cross_encoder_score'],
'bm25_score': result_data['bm25_score'],
'intent_score': result_data['intent_score'],
'skills': skills,
'text': text,
'text_preview': text[:500] + "..." if len(text) > 500 else text
})
# Store in session state
st.session_state.results = results
st.session_state.current_job_description = job_description
st.success(f"π Advanced pipeline complete! Found top {len(st.session_state.results)} candidates.")
st.text("Displaying Top Candidates...")
except Exception as e:
st.error(f"β Error during analysis: {str(e)}")
# Display Results
if st.session_state.results:
st.header("π Top Candidates")
# Create tabs for different views
tab1, tab2, tab3 = st.tabs(["π Summary", "π Detailed Analysis", "π Visualizations"])
with tab1:
# Create summary dataframe with new scoring system
summary_data = []
for result in st.session_state.results:
# Map intent score to text
intent_text = "Yes" if result['intent_score'] == 0.3 else "Maybe" if result['intent_score'] == 0.1 else "No"
summary_data.append({
"Rank": result['rank'],
"Candidate": result['name'],
"Final Score": f"{result['final_score']:.2f}",
"Cross-Encoder": f"{result['cross_encoder_score']:.2f}",
"BM25": f"{result['bm25_score']:.2f}",
"Intent": f"{intent_text} ({result['intent_score']:.1f})",
"Top Skills": ", ".join(result['skills'][:5])
})
summary_df = pd.DataFrame(summary_data)
# Style the dataframe
def color_scores(val):
if isinstance(val, str) and any(char.isdigit() for char in val):
try:
# Extract numeric value
numeric_val = float(''.join(c for c in val if c.isdigit() or c == '.'))
if 'Final Score' in val or numeric_val >= 1.0:
if numeric_val >= 1.2:
return 'background-color: #d4edda'
elif numeric_val >= 1.0:
return 'background-color: #fff3cd'
else:
return 'background-color: #f8d7da'
else:
if numeric_val >= 0.7:
return 'background-color: #d4edda'
elif numeric_val >= 0.5:
return 'background-color: #fff3cd'
else:
return 'background-color: #f8d7da'
except:
pass
return ''
styled_df = summary_df.style.applymap(color_scores, subset=['Final Score', 'Cross-Encoder', 'BM25'])
st.dataframe(styled_df, use_container_width=True)
# Download link
detailed_data = []
for result in st.session_state.results:
intent_text = "Yes" if result['intent_score'] == 0.3 else "Maybe" if result['intent_score'] == 0.1 else "No"
detailed_data.append({
"Rank": result['rank'],
"Candidate": result['name'],
"Final_Score": result['final_score'],
"Cross_Encoder_Score": result['cross_encoder_score'],
"BM25_Score": result['bm25_score'],
"Intent_Score": result['intent_score'],
"Intent_Analysis": intent_text,
"Skills": "; ".join(result['skills']),
"Resume_Preview": result['text_preview']
})
download_df = pd.DataFrame(detailed_data)
st.markdown(create_download_link(download_df), unsafe_allow_html=True)
with tab2:
# Detailed results with new scoring breakdown
for result in st.session_state.results:
intent_text = "Yes" if result['intent_score'] == 0.3 else "Maybe" if result['intent_score'] == 0.1 else "No"
with st.expander(f"#{result['rank']}: {result['name']} (Final Score: {result['final_score']:.2f})"):
col1, col2 = st.columns([1, 2])
with col1:
st.metric("π Final Score", f"{result['final_score']:.2f}")
st.write("**π Score Breakdown:**")
st.metric("π― Cross-Encoder", f"{result['cross_encoder_score']:.2f}", help="Semantic relevance (0-1)")
st.metric("π€ BM25 Keywords", f"{result['bm25_score']:.2f}", help="Keyword matching (0.1-0.2)")
st.metric("π€ Intent Analysis", f"{intent_text} ({result['intent_score']:.1f})", help="Job seeking likelihood (0-0.3)")
st.write("**π― Matching Skills:**")
skills_per_column = 5
skill_cols = st.columns(2)
for idx, skill in enumerate(result['skills'][:10]):
with skill_cols[idx % 2]:
st.write(f"β’ {skill}")
with col2:
st.write("**π Resume Preview:**")
st.text_area("", result['text_preview'], height=200, disabled=True, key=f"preview_{result['rank']}")
with tab3:
# Score visualization
if len(st.session_state.results) > 1:
# Bar chart
st.subheader("Score Comparison")
chart_data = pd.DataFrame({
'Candidate': [r['name'][:20] + '...' if len(r['name']) > 20 else r['name']
for r in st.session_state.results],
'Final Score': [r['final_score'] for r in st.session_state.results],
'Cross-Encoder': [r['cross_encoder_score'] for r in st.session_state.results],
'BM25': [r['bm25_score'] for r in st.session_state.results],
'Intent': [r['intent_score'] for r in st.session_state.results]
})
st.bar_chart(chart_data.set_index('Candidate'))
# Score distribution
col1, col2 = st.columns(2)
with col1:
st.subheader("Score Distribution")
score_ranges = {
'Excellent (β₯1.2)': sum(1 for r in st.session_state.results if r['final_score'] >= 1.2),
'Good (1.0-1.2)': sum(1 for r in st.session_state.results if 1.0 <= r['final_score'] < 1.2),
'Fair (0.8-1.0)': sum(1 for r in st.session_state.results if 0.8 <= r['final_score'] < 1.0),
'Poor (<0.8)': sum(1 for r in st.session_state.results if r['final_score'] < 0.8),
}
dist_df = pd.DataFrame({
'Range': score_ranges.keys(),
'Count': score_ranges.values()
})
st.bar_chart(dist_df.set_index('Range'))
with col2:
st.subheader("Average Scores")
avg_final = np.mean([r['final_score'] for r in st.session_state.results])
avg_cross = np.mean([r['cross_encoder_score'] for r in st.session_state.results])
avg_bm25 = np.mean([r['bm25_score'] for r in st.session_state.results])
avg_intent = np.mean([r['intent_score'] for r in st.session_state.results])
st.metric("Average Final Score", f"{avg_final:.2f}")
st.metric("Average Cross-Encoder", f"{avg_cross:.2f}")
st.metric("Average BM25", f"{avg_bm25:.2f}")
st.metric("Average Intent", f"{avg_intent:.2f}")
# Memory cleanup
st.markdown("---")
st.subheader("π§Ή Reset Application")
col1, col2, col3 = st.columns([1, 1, 3])
with col1:
if st.button("ποΈ Clear Resumes Only", type="secondary", help="Clear only the loaded resumes"):
st.session_state.resume_texts = []
st.session_state.file_names = []
st.session_state.results = []
st.session_state.current_job_description = ""
st.success("β
Resumes cleared!")
st.rerun()
with col2:
if st.button("π§Ή Clear Everything", type="primary", help="Clear all data and free memory"):
st.session_state.resume_texts = []
st.session_state.file_names = []
st.session_state.results = []
st.session_state.current_job_description = ""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
st.success("β
Everything cleared!")
st.rerun()
# Footer
st.markdown("---")
st.markdown(
"""
<div style='text-align: center; color: #666;'>
π Powered by BAAI/bge-large-en-v1.5 & Qwen3-1.7B | Built with Streamlit
</div>
""",
unsafe_allow_html=True
) |