File size: 39,456 Bytes
a928595 556ee06 8c40ab2 d60989a 1d59f84 6ff5e82 d60989a 6ff5e82 1ced284 1d59f84 d60989a da61f37 d60989a a928595 d60989a 7044586 6ff5e82 d60989a 7044586 1ced284 847b129 1ced284 19f7d68 1ced284 847b129 1ced284 847b129 70c101d 1ced284 19f7d68 1ced284 19f7d68 da61f37 1ced284 da61f37 70c101d 1ced284 70c101d 1ced284 da61f37 1ced284 70c101d 1ced284 da61f37 70c101d 1ced284 70c101d 1ced284 847b129 da61f37 1ced284 d5266d0 1ced284 da61f37 847b129 da61f37 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 d5266d0 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b d5266d0 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 d5266d0 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b d5266d0 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 847b129 1ced284 847b129 1ced284 847b129 1ced284 c71ed9b 1ced284 847b129 1ced284 847b129 1ced284 847b129 1ced284 847b129 1ced284 847b129 1ced284 847b129 1ced284 847b129 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 847b129 1ced284 c71ed9b 1ced284 847b129 1ced284 c71ed9b 1ced284 847b129 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 3adcf09 847b129 3adcf09 847b129 3adcf09 847b129 1ced284 c71ed9b 1ced284 847b129 c71ed9b 3adcf09 847b129 1ced284 847b129 1ced284 c71ed9b 1ced284 847b129 1ced284 c71ed9b 1ced284 847b129 1ced284 847b129 1ced284 847b129 1ced284 847b129 1ced284 847b129 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 c71ed9b 1ced284 d60989a 7044586 1ced284 1d59f84 6ff5e82 d60989a 6ff5e82 d60989a 7044586 6ff5e82 1d59f84 6ff5e82 f82b542 d60989a 7044586 6ff5e82 d60989a 6ff5e82 d60989a 6ff5e82 d60989a 7044586 d60989a 6ff5e82 1d59f84 d60989a 556ee06 d60989a 556ee06 d60989a 6ff5e82 d60989a 556ee06 d60989a 1d59f84 6ff5e82 53cdf96 6ff5e82 53cdf96 6ff5e82 53cdf96 6ff5e82 1d59f84 6ff5e82 53cdf96 6ff5e82 1d59f84 53cdf96 6ff5e82 53cdf96 6ff5e82 1d59f84 19f7d68 1ced284 19f7d68 847b129 19f7d68 847b129 19f7d68 1d59f84 6ff5e82 d60989a 6ff5e82 d60989a 1d59f84 d60989a 1d59f84 847b129 1d59f84 847b129 1d59f84 1ced284 1d59f84 847b129 1d59f84 1ced284 1d59f84 d60989a 1d59f84 847b129 1d59f84 847b129 1d59f84 847b129 1d59f84 1ced284 1d59f84 6ff5e82 1d59f84 c1efc08 1d59f84 d60989a 1d59f84 c1efc08 1d59f84 6ff5e82 1d59f84 6ff5e82 1d59f84 7044586 d60989a 7044586 6ff5e82 19f7d68 6ff5e82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
import streamlit as st
import pandas as pd
import numpy as np
import torch
import nltk
import os
import tempfile
import base64
from rank_bm25 import BM25Okapi
from sentence_transformers import SentenceTransformer, CrossEncoder
from nltk.tokenize import word_tokenize
import pdfplumber
import PyPDF2
from docx import Document
import csv
import gc
from transformers import AutoModelForCausalLM, AutoTokenizer
import time
import faiss
import re
# Fix for older PyTorch versions that don't have get_default_device
if not hasattr(torch, 'get_default_device'):
def get_default_device():
if torch.cuda.is_available():
return torch.device('cuda')
else:
return torch.device('cpu')
torch.get_default_device = get_default_device
# Download NLTK resources
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
# Set page configuration
st.set_page_config(
page_title="AI Resume Screener",
page_icon="π―",
layout="wide",
initial_sidebar_state="expanded"
)
# Sidebar configuration
with st.sidebar:
st.title("βοΈ Configuration")
# Advanced options
st.subheader("Display Options")
top_k = st.selectbox("Number of results to display", options=[1, 2, 3, 4, 5], index=4)
# LLM Settings
st.subheader("LLM Settings")
st.info("π‘ Intent analysis using Qwen3-1.7B is always enabled")
st.markdown("---")
st.markdown("### π€ Pipeline Overview")
st.markdown("**5-Stage Advanced Pipeline:**")
st.markdown("1. FAISS Recall (Top 50)")
st.markdown("2. Cross-Encoder Re-ranking (Top 20)")
st.markdown("3. BM25 Keyword Matching")
st.markdown("4. LLM Intent Analysis")
st.markdown("5. Combined Scoring")
st.markdown("### π Scoring Formula")
st.markdown("**Final Score = Cross-Encoder (0-0.7) + BM25 (0.1-0.2) + Intent (0-0.1)**")
# Initialize session state
if 'embedding_model' not in st.session_state:
st.session_state.embedding_model = None
if 'cross_encoder' not in st.session_state:
st.session_state.cross_encoder = None
if 'results' not in st.session_state:
st.session_state.results = []
if 'resume_texts' not in st.session_state:
st.session_state.resume_texts = []
if 'file_names' not in st.session_state:
st.session_state.file_names = []
if 'current_job_description' not in st.session_state:
st.session_state.current_job_description = ""
# No need for Qwen3-14B model since we're not generating explanations
# Separate smaller model for intent analysis
try:
if 'qwen3_intent_tokenizer' not in st.session_state:
st.session_state.qwen3_intent_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-1.7B")
if 'qwen3_intent_model' not in st.session_state:
st.session_state.qwen3_intent_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen3-1.7B",
torch_dtype="auto",
device_map="auto"
)
except Exception as e:
st.warning(f"β οΈ Could not load Qwen3-1.7B: {str(e)}")
st.session_state.qwen3_intent_tokenizer = None
st.session_state.qwen3_intent_model = None
@st.cache_resource
def load_embedding_model():
"""Load and cache the BGE embedding model"""
try:
with st.spinner("π Loading BAAI/bge-large-en-v1.5 model..."):
# Try with explicit device specification
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = SentenceTransformer('BAAI/bge-large-en-v1.5', device=device)
st.success("β
Embedding model loaded successfully!")
return model
except Exception as e:
st.error(f"β Error loading embedding model: {str(e)}")
try:
# Fallback: try with a smaller model
st.warning("π Trying fallback model: all-MiniLM-L6-v2...")
model = SentenceTransformer('all-MiniLM-L6-v2')
st.success("β
Fallback embedding model loaded!")
return model
except Exception as e2:
st.error(f"β Fallback also failed: {str(e2)}")
return None
@st.cache_resource
def load_cross_encoder():
"""Load and cache the Cross-Encoder model"""
try:
with st.spinner("π Loading Cross-Encoder ms-marco-MiniLM-L6-v2..."):
from sentence_transformers import CrossEncoder
# Try with explicit device specification and logistic scoring
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2', device=device)
st.success("β
Cross-Encoder model loaded successfully!")
return model
except Exception as e:
st.error(f"β Error loading Cross-Encoder model: {str(e)}")
try:
# Fallback: try without device specification but with logistic scoring
st.warning("π Trying Cross-Encoder without device specification...")
model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2')
st.success("β
Cross-Encoder model loaded (fallback)!")
return model
except Exception as e2:
st.error(f"β Cross-Encoder fallback also failed: {str(e2)}")
return None
def generate_qwen3_response(prompt, tokenizer, model, max_new_tokens=200):
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=max_new_tokens
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
response = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n")
return response
class ResumeScreener:
def __init__(self):
# Load models
self.embedding_model = load_embedding_model()
self.cross_encoder = load_cross_encoder()
def extract_text_from_file(self, file_path, file_type):
"""Extract text from various file types"""
try:
if file_type == "pdf":
with open(file_path, 'rb') as file:
with pdfplumber.open(file) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text() or ""
if not text.strip():
# Fallback to PyPDF2
file.seek(0)
reader = PyPDF2.PdfReader(file)
text = ""
for page in reader.pages:
text += page.extract_text() or ""
return text
elif file_type == "docx":
doc = Document(file_path)
return " ".join([paragraph.text for paragraph in doc.paragraphs])
elif file_type == "txt":
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
elif file_type == "csv":
with open(file_path, 'r', encoding='utf-8') as file:
csv_reader = csv.reader(file)
return " ".join([" ".join(row) for row in csv_reader])
except Exception as e:
st.error(f"Error extracting text from {file_path}: {str(e)}")
return ""
def get_embedding(self, text):
"""Generate embedding for text using BGE model"""
if self.embedding_model is None:
st.error("No embedding model loaded!")
return np.zeros(1024) # BGE-large dimension
try:
# BGE models recommend adding instruction for retrieval
# For queries (job description)
if len(text) < 500: # Assuming shorter texts are queries
text = "Represent this sentence for searching relevant passages: " + text
# Truncate text to avoid memory issues
text = text[:8192] if text else ""
# Generate embedding
embedding = self.embedding_model.encode(text,
convert_to_numpy=True,
normalize_embeddings=True)
return embedding
except Exception as e:
st.error(f"Error generating embedding: {str(e)}")
return np.zeros(1024) # BGE-large dimension
def calculate_bm25_scores(self, resume_texts, job_description):
"""Calculate BM25 scores for keyword matching"""
try:
job_tokens = word_tokenize(job_description.lower())
corpus = [word_tokenize(text.lower()) for text in resume_texts if text and text.strip()]
if not corpus:
return [0.0] * len(resume_texts)
bm25 = BM25Okapi(corpus)
scores = bm25.get_scores(job_tokens)
return scores.tolist()
except Exception as e:
st.error(f"Error calculating BM25 scores: {str(e)}")
return [0.0] * len(resume_texts)
def advanced_pipeline_ranking(self, resume_texts, job_description, final_top_k=5):
"""Advanced pipeline: FAISS recall -> Cross-encoder -> BM25 -> LLM intent -> Final ranking"""
if not resume_texts:
return []
# Stage 1: FAISS Recall (Top 50)
st.write("π **Stage 1**: FAISS Recall - Finding top 50 candidates...")
top_50_indices = self.faiss_recall(resume_texts, job_description, top_k=50)
# Stage 2: Cross-Encoder Re-ranking (Top 20)
st.write("π― **Stage 2**: Cross-Encoder Re-ranking - Selecting top 20...")
top_20_results = self.cross_encoder_rerank(resume_texts, job_description, top_50_indices, top_k=20)
# Stage 3: BM25 Keyword Matching
st.write("π€ **Stage 3**: BM25 Keyword Matching...")
top_20_with_bm25 = self.add_bm25_scores(resume_texts, job_description, top_20_results)
# Stage 4: LLM Intent Analysis (using Qwen3-1.7B)
st.write("π€ **Stage 4**: LLM Intent Analysis...")
top_20_with_intent = self.add_intent_scores(resume_texts, job_description, top_20_with_bm25)
# Stage 5: Final Combined Ranking
st.write(f"π **Stage 5**: Final Combined Ranking - Selecting top {final_top_k}...")
final_results = self.calculate_final_scores(top_20_with_intent)
return final_results[:final_top_k] # Return top K as selected by user
def faiss_recall(self, resume_texts, job_description, top_k=50):
"""Stage 1: Use FAISS for initial recall to find top 50 resumes"""
try:
# Get job embedding
job_embedding = self.get_embedding(job_description)
st.write(f"π Generating embeddings for {len(resume_texts)} resumes...")
# Get resume embeddings
resume_embeddings = []
progress_bar = st.progress(0)
for i, text in enumerate(resume_texts):
if text:
embedding = self.embedding_model.encode(text[:8192],
convert_to_numpy=True,
normalize_embeddings=True)
resume_embeddings.append(embedding)
else:
resume_embeddings.append(np.zeros(1024))
progress_bar.progress((i + 1) / len(resume_texts))
progress_bar.empty()
st.write("π Building FAISS index and searching...")
# Create FAISS index
resume_embeddings = np.array(resume_embeddings).astype('float32')
dimension = resume_embeddings.shape[1]
index = faiss.IndexFlatIP(dimension) # Inner product for cosine similarity
index.add(resume_embeddings)
# Search for top K
job_embedding = job_embedding.reshape(1, -1).astype('float32')
scores, indices = index.search(job_embedding, min(top_k, len(resume_texts)))
# Show completion message
st.write(f"β
FAISS recall completed! Found top {min(top_k, len(resume_texts))} candidates.")
return indices[0].tolist()
except Exception as e:
st.error(f"Error in FAISS recall: {str(e)}")
# Fallback: return all indices
return list(range(min(top_k, len(resume_texts))))
def cross_encoder_rerank(self, resume_texts, job_description, top_50_indices, top_k=20):
"""Stage 2: Use Cross-Encoder to re-rank top 50 and select top 20"""
try:
if not self.cross_encoder:
st.error("Cross-encoder not loaded!")
return [(idx, 0.0) for idx in top_50_indices[:top_k]]
st.write(f"π Processing {len(top_50_indices)} candidates with Cross-Encoder...")
# Prepare pairs for cross-encoder
pairs = []
valid_indices = []
for idx in top_50_indices:
if idx < len(resume_texts) and resume_texts[idx]:
# Truncate texts for cross-encoder
job_snippet = job_description[:512]
resume_snippet = resume_texts[idx][:512]
pairs.append([job_snippet, resume_snippet])
valid_indices.append(idx)
if not pairs:
st.warning("No valid pairs found for cross-encoder!")
return [(idx, 0.0) for idx in top_50_indices[:top_k]]
st.write(f"π Cross-Encoder analyzing {len(pairs)} resume-job pairs...")
# Get cross-encoder scores
progress_bar = st.progress(0)
scores = []
def safe_sigmoid(x):
"""Safe sigmoid function that handles overflow"""
if x >= 0:
exp_neg_x = np.exp(-x)
return 1 / (1 + exp_neg_x)
else:
exp_x = np.exp(x)
return exp_x / (1 + exp_x)
# Process in batches to avoid memory issues
batch_size = 8
for i in range(0, len(pairs), batch_size):
batch = pairs[i:i+batch_size]
# Get raw logits from cross-encoder
batch_scores = self.cross_encoder.predict(batch)
# Apply sigmoid to convert logits to [0,1] range
batch_scores_sigmoid = [safe_sigmoid(score) for score in batch_scores]
scores.extend(batch_scores_sigmoid)
progress_bar.progress(min(1.0, (i + batch_size) / len(pairs)))
progress_bar.empty()
# Combine indices with scores and sort
indexed_scores = list(zip(valid_indices, scores))
indexed_scores.sort(key=lambda x: x[1], reverse=True)
# Normalize scores to 0-0.7 range (highest score becomes 0.7)
if scores and len(scores) > 0:
max_score = max(scores)
min_score = min(scores)
if max_score > min_score:
# Scale to 0-0.7 range
normalized_indexed_scores = []
for idx, score in indexed_scores:
normalized_score = 0.7 * (score - min_score) / (max_score - min_score)
normalized_indexed_scores.append((idx, normalized_score))
indexed_scores = normalized_indexed_scores
else:
# All scores are the same, give them all 0.35 (middle value)
indexed_scores = [(idx, 0.35) for idx, _ in indexed_scores]
# Show completion message
st.write(f"β
Cross-Encoder completed! Selected top {min(top_k, len(indexed_scores))} candidates.")
st.write(f"π Cross-Encoder scores normalized to 0-0.7 range (highest: {indexed_scores[0][1]:.3f})")
return indexed_scores[:top_k]
except Exception as e:
st.error(f"Error in cross-encoder re-ranking: {str(e)}")
return [(idx, 0.0) for idx in top_50_indices[:top_k]]
def add_bm25_scores(self, resume_texts, job_description, top_20_results):
"""Stage 3: Add BM25 scores to top 20 resumes"""
try:
st.write(f"π Calculating BM25 keyword scores for {len(top_20_results)} candidates...")
# Get texts for top 20
top_20_texts = [resume_texts[idx] for idx, _ in top_20_results]
# Calculate BM25 scores
bm25_scores = self.calculate_bm25_scores(top_20_texts, job_description)
# Normalize BM25 scores to 0.1-0.2 range
if bm25_scores and max(bm25_scores) > 0:
max_bm25 = max(bm25_scores)
min_bm25 = min(bm25_scores)
if max_bm25 > min_bm25:
normalized_bm25 = [
0.1 + 0.1 * (score - min_bm25) / (max_bm25 - min_bm25)
for score in bm25_scores
]
else:
normalized_bm25 = [0.15] * len(bm25_scores)
else:
normalized_bm25 = [0.15] * len(top_20_results)
# Combine with existing results
results_with_bm25 = []
for i, (idx, cross_score) in enumerate(top_20_results):
bm25_score = normalized_bm25[i] if i < len(normalized_bm25) else 0.15
results_with_bm25.append((idx, cross_score, bm25_score))
st.write(f"β
BM25 keyword matching completed!")
return results_with_bm25
except Exception as e:
st.error(f"Error adding BM25 scores: {str(e)}")
return [(idx, cross_score, 0.15) for idx, cross_score in top_20_results]
def add_intent_scores(self, resume_texts, job_description, top_20_with_bm25):
"""Stage 4: Add LLM intent analysis scores"""
try:
results_with_intent = []
progress_bar = st.progress(0)
for i, (idx, cross_score, bm25_score) in enumerate(top_20_with_bm25):
candidate_name = st.session_state.file_names[idx] if idx < len(st.session_state.file_names) else f"Resume_{idx}"
intent_score, intent_text = self.analyze_intent(resume_texts[idx], job_description)
# Print the intent analysis result
st.write(f"π **{candidate_name}**: Intent = **{intent_text}** (Score: {intent_score:.1f})")
results_with_intent.append((idx, cross_score, bm25_score, intent_score))
progress_bar.progress((i + 1) / len(top_20_with_bm25))
progress_bar.empty()
return results_with_intent
except Exception as e:
st.error(f"Error adding intent scores: {str(e)}")
return [(idx, cross_score, bm25_score, 0.1) for idx, cross_score, bm25_score in top_20_with_bm25]
def analyze_intent(self, resume_text, job_description):
"""Analyze candidate's intent using LLM"""
try:
# Truncate texts
resume_snippet = resume_text[:1500] if len(resume_text) > 1500 else resume_text
job_snippet = job_description[:800] if len(job_description) > 800 else job_description
prompt = f"""You are a helpful HR assistant. Look at this candidate's resume and job posting.
The candidate is likely a good fit if they have ANY of these:
- Related work experience (even if different industry)
- Relevant technical skills
- Educational background that could apply
- Any transferable skills
- Similar job titles or responsibilities
Be generous in your assessment. Most candidates who made it this far are potentially suitable.
Answer "Yes" for most candidates unless they are completely unrelated.
Answer "No" only if absolutely no connection exists.
Job Posting:
{job_snippet}
Candidate Resume:
{resume_snippet}
Is this candidate suitable? Answer:"""
response = generate_qwen3_response(
prompt,
st.session_state.qwen3_intent_tokenizer,
st.session_state.qwen3_intent_model,
max_new_tokens=20
)
# Debug: print the raw response
print(f"Raw LLM response: '{response}'")
# Parse response - look for the answer directly
response_lower = response.lower().strip()
if 'yes' in response_lower:
return 0.1, "Yes"
elif 'no' in response_lower:
return 0.0, "No"
else:
# If no clear answer, default to "Yes" to be more lenient
print(f"Unclear response, defaulting to Yes: '{response}'")
return 0.1, "Yes"
except Exception as e:
st.warning(f"Error analyzing intent: {str(e)}")
return 0.1, "Yes" # Default to "Yes" instead of "Maybe"
def calculate_final_scores(self, results_with_all_scores):
"""Stage 5: Calculate final combined scores"""
try:
st.write(f"π Computing final combined scores for {len(results_with_all_scores)} candidates...")
final_results = []
for idx, cross_score, bm25_score, intent_score in results_with_all_scores:
# Cross-encoder scores are already in [0,1] range with logistic scoring
normalized_cross = cross_score
# Final Score = Cross-Encoder (0-0.7) + BM25 (0.1-0.2) + Intent (0-0.1)
final_score = normalized_cross + bm25_score + intent_score
final_results.append({
'index': idx,
'cross_encoder_score': normalized_cross,
'bm25_score': bm25_score,
'intent_score': intent_score,
'final_score': final_score
})
# Sort by final score
final_results.sort(key=lambda x: x['final_score'], reverse=True)
st.write(f"β
Final ranking completed! Candidates sorted by combined score.")
return final_results
except Exception as e:
st.error(f"Error calculating final scores: {str(e)}")
return []
def generate_simple_explanation(self, score, semantic_score, bm25_score):
"""Generate simple explanation for the match (fallback)"""
if score > 0.8:
quality = "excellent"
elif score > 0.6:
quality = "strong"
elif score > 0.4:
quality = "moderate"
else:
quality = "limited"
explanation = f"This candidate shows {quality} alignment with the position (score: {score:.2f}). "
if semantic_score > bm25_score:
explanation += f"The resume demonstrates strong conceptual relevance ({semantic_score:.2f}) suggesting good experience fit. "
else:
explanation += f"The resume has high keyword match ({bm25_score:.2f}) indicating direct skill alignment. "
return explanation
def create_download_link(df, filename="resume_screening_results.csv"):
"""Create download link for results"""
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
return f'<a href="data:file/csv;base64,{b64}" download="{filename}" class="download-btn">π₯ Download Results CSV</a>'
# Main App Interface
st.title("π― AI-Powered Resume Screener")
st.markdown("*Find the perfect candidates using BAAI/bge-large-en-v1.5 embeddings and Qwen3-14B explanations*")
st.markdown("---")
# Initialize screener
screener = ResumeScreener()
# Job Description Input
st.header("π Step 1: Enter Job Description")
job_description = st.text_area(
"Enter the complete job description or requirements:",
height=150,
placeholder="Paste the job description here, including required skills, experience, and qualifications..."
)
# Resume Input Options
st.header("π Step 2: Upload Resumes")
# Show loaded resumes indicator
if st.session_state.resume_texts:
col1, col2 = st.columns([3, 1])
with col1:
st.info(f"π {len(st.session_state.resume_texts)} resumes loaded and ready for analysis")
with col2:
if st.button("ποΈ Clear Resumes", type="secondary", help="Clear all loaded resumes to start fresh"):
st.session_state.resume_texts = []
st.session_state.file_names = []
st.session_state.results = []
st.session_state.current_job_description = ""
st.rerun()
input_method = st.radio(
"Choose input method:",
["π Upload Files", "ποΈ Load from CSV Dataset"]
)
if input_method == "π Upload Files":
uploaded_files = st.file_uploader(
"Upload resume files",
type=["pdf", "docx", "txt"],
accept_multiple_files=True,
help="Supported formats: PDF, DOCX, TXT"
)
if uploaded_files:
with st.spinner(f"π Processing {len(uploaded_files)} files..."):
resume_texts = []
file_names = []
for file in uploaded_files:
file_type = file.name.split('.')[-1].lower()
with tempfile.NamedTemporaryFile(delete=False, suffix=f'.{file_type}') as tmp_file:
tmp_file.write(file.getvalue())
tmp_path = tmp_file.name
text = screener.extract_text_from_file(tmp_path, file_type)
if text.strip():
resume_texts.append(text)
file_names.append(file.name)
os.unlink(tmp_path)
st.session_state.resume_texts = resume_texts
st.session_state.file_names = file_names
if resume_texts:
st.success(f"β
Successfully processed {len(resume_texts)} resumes")
elif input_method == "ποΈ Load from CSV Dataset":
csv_file = st.file_uploader("Upload CSV file with resume data", type=["csv"])
if csv_file:
try:
df = pd.read_csv(csv_file)
st.write("**CSV Preview:**")
st.dataframe(df.head())
text_column = st.selectbox(
"Select column containing resume text:",
df.columns.tolist()
)
name_column = st.selectbox(
"Select column for candidate names/IDs (optional):",
["Use Index"] + df.columns.tolist()
)
if st.button("π Process CSV Data"):
with st.spinner("π Processing CSV data..."):
resume_texts = []
file_names = []
for idx, row in df.iterrows():
text = str(row[text_column])
if text and text.strip() and text.lower() != 'nan':
resume_texts.append(text)
if name_column == "Use Index":
file_names.append(f"Resume_{idx}")
else:
file_names.append(str(row[name_column]))
st.session_state.resume_texts = resume_texts
st.session_state.file_names = file_names
if resume_texts:
st.success(f"β
Successfully loaded {len(resume_texts)} resumes from CSV")
except Exception as e:
st.error(f"β Error processing CSV: {str(e)}")
# Processing and Results
st.header("π Step 3: Analyze Resumes")
# Run Advanced Pipeline Analysis
if st.button("π Advanced Pipeline Analysis",
disabled=not (job_description and st.session_state.resume_texts),
type="primary",
help="Run the complete 5-stage advanced pipeline"):
if len(st.session_state.resume_texts) == 0:
st.error("β Please upload resumes first!")
elif not job_description.strip():
st.error("β Please enter a job description!")
else:
with st.spinner("π Running Advanced Pipeline Analysis..."):
try:
# Run the advanced pipeline
pipeline_results = screener.advanced_pipeline_ranking(
st.session_state.resume_texts, job_description, final_top_k=top_k
)
# Prepare results for display
results = []
for rank, result_data in enumerate(pipeline_results, 1):
idx = result_data['index']
name = st.session_state.file_names[idx]
text = st.session_state.resume_texts[idx]
results.append({
'rank': rank,
'name': name,
'final_score': result_data['final_score'],
'cross_encoder_score': result_data['cross_encoder_score'],
'bm25_score': result_data['bm25_score'],
'intent_score': result_data['intent_score'],
'skills': [],
'text': text,
'text_preview': text[:500] + "..." if len(text) > 500 else text,
'explanation': None # Will be filled with simple explanation
})
# Add simple explanations
for result in results:
result['explanation'] = screener.generate_simple_explanation(
result['final_score'],
result['cross_encoder_score'],
result['bm25_score']
)
# Store in session state
st.session_state.results = results
st.session_state.current_job_description = job_description
st.success(f"π Advanced pipeline complete! Found top {len(st.session_state.results)} candidates.")
except Exception as e:
st.error(f"β Error during analysis: {str(e)}")
# Display Results
if st.session_state.results:
st.header("π Top Candidates")
# Create tabs for different views
tab1, tab2, tab3 = st.tabs(["π Summary", "π Detailed Analysis", "π Visualizations"])
with tab1:
# Create summary dataframe with new scoring system
summary_data = []
for result in st.session_state.results:
# Map intent score to text
intent_text = "Yes" if result['intent_score'] == 0.1 else "No"
summary_data.append({
"Rank": result['rank'],
"Candidate": result['name'],
"Final Score": f"{result['final_score']:.2f}",
"Cross-Encoder": f"{result['cross_encoder_score']:.2f}",
"BM25": f"{result['bm25_score']:.2f}",
"Intent": f"{intent_text} ({result['intent_score']:.1f})"
})
summary_df = pd.DataFrame(summary_data)
# Style the dataframe
def color_scores(val):
if isinstance(val, str) and any(char.isdigit() for char in val):
try:
# Extract numeric value
numeric_val = float(''.join(c for c in val if c.isdigit() or c == '.'))
if 'Final Score' in val or numeric_val >= 1.0:
if numeric_val >= 1.2:
return 'background-color: #d4edda'
elif numeric_val >= 1.0:
return 'background-color: #fff3cd'
else:
return 'background-color: #f8d7da'
else:
if numeric_val >= 0.7:
return 'background-color: #d4edda'
elif numeric_val >= 0.5:
return 'background-color: #fff3cd'
else:
return 'background-color: #f8d7da'
except:
pass
return ''
styled_df = summary_df.style.applymap(color_scores, subset=['Final Score', 'Cross-Encoder', 'BM25'])
st.dataframe(styled_df, use_container_width=True)
# Download link
detailed_data = []
for result in st.session_state.results:
intent_text = "Yes" if result['intent_score'] == 0.1 else "No"
detailed_data.append({
"Rank": result['rank'],
"Candidate": result['name'],
"Final_Score": result['final_score'],
"Cross_Encoder_Score": result['cross_encoder_score'],
"BM25_Score": result['bm25_score'],
"Intent_Score": result['intent_score'],
"Intent_Analysis": intent_text,
"AI_Explanation": result['explanation'],
"Resume_Preview": result['text_preview']
})
download_df = pd.DataFrame(detailed_data)
st.markdown(create_download_link(download_df), unsafe_allow_html=True)
with tab2:
# Detailed results with new scoring breakdown
for result in st.session_state.results:
intent_text = "Yes" if result['intent_score'] == 0.1 else "No"
with st.expander(f"#{result['rank']}: {result['name']} (Final Score: {result['final_score']:.2f})"):
col1, col2 = st.columns([1, 2])
with col1:
st.metric("π Final Score", f"{result['final_score']:.2f}")
st.write("**π Score Breakdown:**")
st.metric("π― Cross-Encoder", f"{result['cross_encoder_score']:.2f}", help="Semantic relevance (0-0.7)")
st.metric("π€ BM25 Keywords", f"{result['bm25_score']:.2f}", help="Keyword matching (0.1-0.2)")
st.metric("π€ Intent Analysis", f"{intent_text} ({result['intent_score']:.2f})", help="Job seeking likelihood (0-0.1)")
with col2:
st.write("**π‘ AI-Generated Match Analysis:**")
st.info(result['explanation'])
st.write("**π Resume Preview:**")
st.text_area("", result['text_preview'], height=200, disabled=True, key=f"preview_{result['rank']}")
with tab3:
# Score visualization
if len(st.session_state.results) > 1:
# Bar chart
st.subheader("Score Comparison")
chart_data = pd.DataFrame({
'Candidate': [r['name'][:20] + '...' if len(r['name']) > 20 else r['name']
for r in st.session_state.results],
'Final Score': [r['final_score'] for r in st.session_state.results],
'Cross-Encoder': [r['cross_encoder_score'] for r in st.session_state.results],
'BM25': [r['bm25_score'] for r in st.session_state.results],
'Intent': [r['intent_score'] for r in st.session_state.results]
})
st.bar_chart(chart_data.set_index('Candidate'))
# Score distribution
col1, col2 = st.columns(2)
with col1:
st.subheader("Score Distribution")
score_ranges = {
'Excellent (β₯1.2)': sum(1 for r in st.session_state.results if r['final_score'] >= 1.2),
'Good (1.0-1.2)': sum(1 for r in st.session_state.results if 1.0 <= r['final_score'] < 1.2),
'Fair (0.8-1.0)': sum(1 for r in st.session_state.results if 0.8 <= r['final_score'] < 1.0),
'Poor (<0.8)': sum(1 for r in st.session_state.results if r['final_score'] < 0.8),
}
dist_df = pd.DataFrame({
'Range': score_ranges.keys(),
'Count': score_ranges.values()
})
st.bar_chart(dist_df.set_index('Range'))
with col2:
st.subheader("Average Scores")
avg_final = np.mean([r['final_score'] for r in st.session_state.results])
avg_cross = np.mean([r['cross_encoder_score'] for r in st.session_state.results])
avg_bm25 = np.mean([r['bm25_score'] for r in st.session_state.results])
avg_intent = np.mean([r['intent_score'] for r in st.session_state.results])
st.metric("Average Final Score", f"{avg_final:.2f}")
st.metric("Average Cross-Encoder", f"{avg_cross:.2f}")
st.metric("Average BM25", f"{avg_bm25:.2f}")
st.metric("Average Intent", f"{avg_intent:.2f}")
# Memory cleanup
st.markdown("---")
st.subheader("π§Ή Reset Application")
col1, col2, col3 = st.columns([1, 1, 3])
with col1:
if st.button("ποΈ Clear Resumes Only", type="secondary", help="Clear only the loaded resumes"):
st.session_state.resume_texts = []
st.session_state.file_names = []
st.session_state.results = []
st.session_state.current_job_description = ""
st.success("β
Resumes cleared!")
st.rerun()
with col2:
if st.button("π§Ή Clear Everything", type="primary", help="Clear all data and free memory"):
st.session_state.resume_texts = []
st.session_state.file_names = []
st.session_state.results = []
st.session_state.current_job_description = ""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
st.success("β
Everything cleared!")
st.rerun()
# Footer
st.markdown("---")
st.markdown(
"""
<div style='text-align: center; color: #666;'>
π Powered by BAAI/bge-large-en-v1.5 & Qwen3-1.7B | Built with Streamlit
</div>
""",
unsafe_allow_html=True
) |