File size: 39,456 Bytes
a928595
556ee06
8c40ab2
d60989a
 
 
 
 
 
1d59f84
 
6ff5e82
d60989a
 
 
6ff5e82
1ced284
1d59f84
 
 
d60989a
da61f37
 
 
 
 
 
 
 
 
d60989a
 
 
 
 
a928595
d60989a
7044586
6ff5e82
 
d60989a
 
7044586
 
1ced284
 
 
 
 
847b129
1ced284
 
 
 
19f7d68
1ced284
 
847b129
 
 
 
 
 
 
 
1ced284
847b129
70c101d
1ced284
 
 
 
 
 
 
 
 
 
 
19f7d68
1ced284
 
19f7d68
da61f37
1ced284
da61f37
 
 
 
 
 
 
 
 
 
 
 
 
70c101d
1ced284
 
 
70c101d
1ced284
da61f37
 
 
1ced284
 
70c101d
1ced284
da61f37
 
 
 
 
 
 
 
 
70c101d
1ced284
 
 
70c101d
1ced284
 
847b129
da61f37
 
1ced284
 
d5266d0
1ced284
da61f37
847b129
da61f37
 
 
 
 
 
 
c71ed9b
 
 
 
 
 
 
1ced284
c71ed9b
 
 
 
 
 
 
 
 
 
1ced284
c71ed9b
1ced284
 
 
d5266d0
c71ed9b
1ced284
c71ed9b
 
 
 
 
 
 
1ced284
c71ed9b
1ced284
c71ed9b
 
 
1ced284
 
c71ed9b
1ced284
c71ed9b
 
 
1ced284
c71ed9b
 
 
1ced284
c71ed9b
 
 
 
1ced284
c71ed9b
 
 
d5266d0
c71ed9b
1ced284
c71ed9b
1ced284
 
 
c71ed9b
1ced284
 
 
c71ed9b
1ced284
 
c71ed9b
1ced284
 
 
 
 
c71ed9b
1ced284
c71ed9b
 
1ced284
d5266d0
c71ed9b
1ced284
c71ed9b
 
 
1ced284
c71ed9b
 
1ced284
c71ed9b
 
 
1ced284
c71ed9b
 
 
d5266d0
1ced284
 
c71ed9b
 
1ced284
 
 
c71ed9b
1ced284
 
 
c71ed9b
1ced284
 
 
c71ed9b
1ced284
 
 
c71ed9b
1ced284
 
 
c71ed9b
1ced284
 
 
c71ed9b
1ced284
 
 
 
 
847b129
 
1ced284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
847b129
 
1ced284
 
 
 
 
 
 
 
 
 
847b129
 
 
1ced284
 
 
 
 
 
 
c71ed9b
1ced284
 
 
 
 
 
847b129
 
1ced284
 
 
 
 
 
 
 
 
 
 
 
 
847b129
1ced284
 
847b129
 
1ced284
 
 
 
847b129
 
 
 
 
 
 
 
 
1ced284
 
 
 
847b129
1ced284
847b129
 
 
1ced284
 
 
 
 
 
 
 
847b129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ced284
 
 
 
c71ed9b
1ced284
c71ed9b
1ced284
 
847b129
 
1ced284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c71ed9b
1ced284
 
 
 
 
 
 
 
847b129
 
1ced284
 
 
 
 
 
c71ed9b
1ced284
 
 
 
 
 
847b129
 
 
 
 
 
1ced284
 
 
 
 
 
 
 
 
 
c71ed9b
1ced284
c71ed9b
1ced284
 
 
3adcf09
847b129
3adcf09
847b129
 
 
 
 
 
 
 
 
 
 
 
 
3adcf09
 
 
 
 
847b129
1ced284
 
c71ed9b
1ced284
 
847b129
c71ed9b
3adcf09
847b129
 
 
 
 
 
 
 
 
1ced284
847b129
 
 
1ced284
c71ed9b
1ced284
847b129
1ced284
c71ed9b
1ced284
 
847b129
 
1ced284
 
 
847b129
 
1ced284
847b129
1ced284
 
 
 
 
 
 
 
 
 
 
 
 
847b129
 
1ced284
 
 
 
 
 
847b129
1ced284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c71ed9b
 
1ced284
c71ed9b
 
 
 
1ced284
c71ed9b
1ced284
d60989a
7044586
1ced284
1d59f84
 
6ff5e82
 
d60989a
6ff5e82
 
 
d60989a
7044586
6ff5e82
 
 
1d59f84
 
 
 
 
 
 
 
 
 
 
 
 
6ff5e82
 
f82b542
d60989a
7044586
6ff5e82
d60989a
 
6ff5e82
d60989a
6ff5e82
d60989a
7044586
d60989a
6ff5e82
1d59f84
 
 
d60989a
 
556ee06
d60989a
 
 
556ee06
d60989a
6ff5e82
d60989a
 
556ee06
d60989a
1d59f84
 
 
 
6ff5e82
 
 
 
 
53cdf96
6ff5e82
 
 
 
 
53cdf96
6ff5e82
 
 
 
53cdf96
6ff5e82
 
 
 
 
 
 
1d59f84
 
 
6ff5e82
 
 
 
53cdf96
6ff5e82
 
 
 
1d59f84
 
 
53cdf96
6ff5e82
 
53cdf96
6ff5e82
 
 
 
1d59f84
 
19f7d68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ced284
19f7d68
 
 
 
 
 
 
847b129
19f7d68
 
 
 
 
 
 
 
 
 
847b129
19f7d68
 
 
 
 
 
 
 
 
 
1d59f84
6ff5e82
d60989a
6ff5e82
d60989a
1d59f84
 
d60989a
1d59f84
 
 
 
 
847b129
1d59f84
 
 
 
 
 
 
847b129
1d59f84
 
1ced284
1d59f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
847b129
1d59f84
 
 
 
 
 
 
 
 
1ced284
1d59f84
 
 
 
 
d60989a
1d59f84
 
 
847b129
1d59f84
 
 
 
 
 
 
 
847b129
1d59f84
847b129
1d59f84
 
1ced284
 
 
1d59f84
 
6ff5e82
1d59f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1efc08
 
1d59f84
 
 
 
 
 
 
d60989a
1d59f84
 
 
 
 
c1efc08
 
1d59f84
 
 
 
 
6ff5e82
1d59f84
 
 
 
6ff5e82
 
1d59f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7044586
d60989a
7044586
6ff5e82
 
 
19f7d68
6ff5e82
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
import streamlit as st
import pandas as pd
import numpy as np
import torch
import nltk
import os
import tempfile
import base64
from rank_bm25 import BM25Okapi
from sentence_transformers import SentenceTransformer, CrossEncoder
from nltk.tokenize import word_tokenize
import pdfplumber
import PyPDF2
from docx import Document
import csv
import gc
from transformers import AutoModelForCausalLM, AutoTokenizer
import time
import faiss
import re

# Fix for older PyTorch versions that don't have get_default_device
if not hasattr(torch, 'get_default_device'):
    def get_default_device():
        if torch.cuda.is_available():
            return torch.device('cuda')
        else:
            return torch.device('cpu')
    torch.get_default_device = get_default_device

# Download NLTK resources
try:
    nltk.data.find('tokenizers/punkt')
except LookupError:
    nltk.download('punkt')

# Set page configuration
st.set_page_config(
    page_title="AI Resume Screener",
    page_icon="🎯",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Sidebar configuration
with st.sidebar:
    st.title("βš™οΈ Configuration")
    
    # Advanced options
    st.subheader("Display Options")
    top_k = st.selectbox("Number of results to display", options=[1, 2, 3, 4, 5], index=4)
    
    # LLM Settings
    st.subheader("LLM Settings")
    st.info("πŸ’‘ Intent analysis using Qwen3-1.7B is always enabled")
    
    st.markdown("---")
    st.markdown("### πŸ€– Pipeline Overview")
    st.markdown("**5-Stage Advanced Pipeline:**")
    st.markdown("1. FAISS Recall (Top 50)")
    st.markdown("2. Cross-Encoder Re-ranking (Top 20)")
    st.markdown("3. BM25 Keyword Matching")
    st.markdown("4. LLM Intent Analysis")
    st.markdown("5. Combined Scoring")
    
    st.markdown("### πŸ“ˆ Scoring Formula")
    st.markdown("**Final Score = Cross-Encoder (0-0.7) + BM25 (0.1-0.2) + Intent (0-0.1)**")

# Initialize session state
if 'embedding_model' not in st.session_state:
    st.session_state.embedding_model = None
if 'cross_encoder' not in st.session_state:
    st.session_state.cross_encoder = None
if 'results' not in st.session_state:
    st.session_state.results = []
if 'resume_texts' not in st.session_state:
    st.session_state.resume_texts = []
if 'file_names' not in st.session_state:
    st.session_state.file_names = []

if 'current_job_description' not in st.session_state:
    st.session_state.current_job_description = ""
# No need for Qwen3-14B model since we're not generating explanations

# Separate smaller model for intent analysis
try:
    if 'qwen3_intent_tokenizer' not in st.session_state:
        st.session_state.qwen3_intent_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-1.7B")
    if 'qwen3_intent_model' not in st.session_state:
        st.session_state.qwen3_intent_model = AutoModelForCausalLM.from_pretrained(
            "Qwen/Qwen3-1.7B",
            torch_dtype="auto",
            device_map="auto"
        )
except Exception as e:
    st.warning(f"⚠️ Could not load Qwen3-1.7B: {str(e)}")
    st.session_state.qwen3_intent_tokenizer = None
    st.session_state.qwen3_intent_model = None

@st.cache_resource
def load_embedding_model():
    """Load and cache the BGE embedding model"""
    try:
        with st.spinner("πŸ”„ Loading BAAI/bge-large-en-v1.5 model..."):
            # Try with explicit device specification
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
            model = SentenceTransformer('BAAI/bge-large-en-v1.5', device=device)
            st.success("βœ… Embedding model loaded successfully!")
            return model
    except Exception as e:
        st.error(f"❌ Error loading embedding model: {str(e)}")
        try:
            # Fallback: try with a smaller model
            st.warning("πŸ”„ Trying fallback model: all-MiniLM-L6-v2...")
            model = SentenceTransformer('all-MiniLM-L6-v2')
            st.success("βœ… Fallback embedding model loaded!")
            return model
        except Exception as e2:
            st.error(f"❌ Fallback also failed: {str(e2)}")
            return None

@st.cache_resource
def load_cross_encoder():
    """Load and cache the Cross-Encoder model"""
    try:
        with st.spinner("πŸ”„ Loading Cross-Encoder ms-marco-MiniLM-L6-v2..."):
            from sentence_transformers import CrossEncoder
            # Try with explicit device specification and logistic scoring
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
            model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2', device=device)
            st.success("βœ… Cross-Encoder model loaded successfully!")
            return model
    except Exception as e:
        st.error(f"❌ Error loading Cross-Encoder model: {str(e)}")
        try:
            # Fallback: try without device specification but with logistic scoring
            st.warning("πŸ”„ Trying Cross-Encoder without device specification...")
            model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2')
            st.success("βœ… Cross-Encoder model loaded (fallback)!")
            return model
        except Exception as e2:
            st.error(f"❌ Cross-Encoder fallback also failed: {str(e2)}")
            return None

def generate_qwen3_response(prompt, tokenizer, model, max_new_tokens=200):
    messages = [{"role": "user", "content": prompt}]
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True,
        enable_thinking=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
    generated_ids = model.generate(
        **model_inputs,
        max_new_tokens=max_new_tokens
    )
    output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
    response = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n")
    return response

class ResumeScreener:
    def __init__(self):
        # Load models
        self.embedding_model = load_embedding_model()
        self.cross_encoder = load_cross_encoder()
    
    def extract_text_from_file(self, file_path, file_type):
        """Extract text from various file types"""
        try:
            if file_type == "pdf":
                with open(file_path, 'rb') as file:
                    with pdfplumber.open(file) as pdf:
                        text = ""
                        for page in pdf.pages:
                            text += page.extract_text() or ""
                        
                        if not text.strip():
                            # Fallback to PyPDF2
                            file.seek(0)
                            reader = PyPDF2.PdfReader(file)
                            text = ""
                            for page in reader.pages:
                                text += page.extract_text() or ""
                        return text
                        
            elif file_type == "docx":
                doc = Document(file_path)
                return " ".join([paragraph.text for paragraph in doc.paragraphs])
                
            elif file_type == "txt":
                with open(file_path, 'r', encoding='utf-8') as file:
                    return file.read()
                    
            elif file_type == "csv":
                with open(file_path, 'r', encoding='utf-8') as file:
                    csv_reader = csv.reader(file)
                    return " ".join([" ".join(row) for row in csv_reader])
                    
        except Exception as e:
            st.error(f"Error extracting text from {file_path}: {str(e)}")
            return ""
    
    def get_embedding(self, text):
        """Generate embedding for text using BGE model"""
        if self.embedding_model is None:
            st.error("No embedding model loaded!")
            return np.zeros(1024)  # BGE-large dimension
            
        try:
            # BGE models recommend adding instruction for retrieval
            # For queries (job description)
            if len(text) < 500:  # Assuming shorter texts are queries
                text = "Represent this sentence for searching relevant passages: " + text
            
            # Truncate text to avoid memory issues
            text = text[:8192] if text else ""
            
            # Generate embedding
            embedding = self.embedding_model.encode(text, 
                                                  convert_to_numpy=True,
                                                  normalize_embeddings=True)
            return embedding
                    
        except Exception as e:
            st.error(f"Error generating embedding: {str(e)}")
            return np.zeros(1024)  # BGE-large dimension
    
    def calculate_bm25_scores(self, resume_texts, job_description):
        """Calculate BM25 scores for keyword matching"""
        try:
            job_tokens = word_tokenize(job_description.lower())
            corpus = [word_tokenize(text.lower()) for text in resume_texts if text and text.strip()]
            
            if not corpus:
                return [0.0] * len(resume_texts)
                
            bm25 = BM25Okapi(corpus)
            scores = bm25.get_scores(job_tokens)
            return scores.tolist()
            
        except Exception as e:
            st.error(f"Error calculating BM25 scores: {str(e)}")
            return [0.0] * len(resume_texts)
    
    def advanced_pipeline_ranking(self, resume_texts, job_description, final_top_k=5):
        """Advanced pipeline: FAISS recall -> Cross-encoder -> BM25 -> LLM intent -> Final ranking"""
        if not resume_texts:
            return []
            
        # Stage 1: FAISS Recall (Top 50)
        st.write("πŸ” **Stage 1**: FAISS Recall - Finding top 50 candidates...")
        top_50_indices = self.faiss_recall(resume_texts, job_description, top_k=50)
        
        # Stage 2: Cross-Encoder Re-ranking (Top 20)
        st.write("🎯 **Stage 2**: Cross-Encoder Re-ranking - Selecting top 20...")
        top_20_results = self.cross_encoder_rerank(resume_texts, job_description, top_50_indices, top_k=20)
        
        # Stage 3: BM25 Keyword Matching
        st.write("πŸ”€ **Stage 3**: BM25 Keyword Matching...")
        top_20_with_bm25 = self.add_bm25_scores(resume_texts, job_description, top_20_results)
        
        # Stage 4: LLM Intent Analysis (using Qwen3-1.7B)
        st.write("πŸ€– **Stage 4**: LLM Intent Analysis...")
        top_20_with_intent = self.add_intent_scores(resume_texts, job_description, top_20_with_bm25)
        
        # Stage 5: Final Combined Ranking
        st.write(f"πŸ† **Stage 5**: Final Combined Ranking - Selecting top {final_top_k}...")
        final_results = self.calculate_final_scores(top_20_with_intent)
        
        return final_results[:final_top_k]  # Return top K as selected by user
    
    def faiss_recall(self, resume_texts, job_description, top_k=50):
        """Stage 1: Use FAISS for initial recall to find top 50 resumes"""
        try:
            # Get job embedding
            job_embedding = self.get_embedding(job_description)
            
            st.write(f"πŸ”„ Generating embeddings for {len(resume_texts)} resumes...")
            
            # Get resume embeddings
            resume_embeddings = []
            progress_bar = st.progress(0)
            
            for i, text in enumerate(resume_texts):
                if text:
                    embedding = self.embedding_model.encode(text[:8192], 
                                                          convert_to_numpy=True,
                                                          normalize_embeddings=True)
                    resume_embeddings.append(embedding)
                else:
                    resume_embeddings.append(np.zeros(1024))
                progress_bar.progress((i + 1) / len(resume_texts))
            
            progress_bar.empty()
            
            st.write("πŸ” Building FAISS index and searching...")
            
            # Create FAISS index
            resume_embeddings = np.array(resume_embeddings).astype('float32')
            dimension = resume_embeddings.shape[1]
            index = faiss.IndexFlatIP(dimension)  # Inner product for cosine similarity
            index.add(resume_embeddings)
            
            # Search for top K
            job_embedding = job_embedding.reshape(1, -1).astype('float32')
            scores, indices = index.search(job_embedding, min(top_k, len(resume_texts)))
            
            # Show completion message
            st.write(f"βœ… FAISS recall completed! Found top {min(top_k, len(resume_texts))} candidates.")
            
            return indices[0].tolist()
            
        except Exception as e:
            st.error(f"Error in FAISS recall: {str(e)}")
            # Fallback: return all indices
            return list(range(min(top_k, len(resume_texts))))
    
    def cross_encoder_rerank(self, resume_texts, job_description, top_50_indices, top_k=20):
        """Stage 2: Use Cross-Encoder to re-rank top 50 and select top 20"""
        try:
            if not self.cross_encoder:
                st.error("Cross-encoder not loaded!")
                return [(idx, 0.0) for idx in top_50_indices[:top_k]]
            
            st.write(f"πŸ”„ Processing {len(top_50_indices)} candidates with Cross-Encoder...")
            
            # Prepare pairs for cross-encoder
            pairs = []
            valid_indices = []
            
            for idx in top_50_indices:
                if idx < len(resume_texts) and resume_texts[idx]:
                    # Truncate texts for cross-encoder
                    job_snippet = job_description[:512]
                    resume_snippet = resume_texts[idx][:512]
                    pairs.append([job_snippet, resume_snippet])
                    valid_indices.append(idx)
            
            if not pairs:
                st.warning("No valid pairs found for cross-encoder!")
                return [(idx, 0.0) for idx in top_50_indices[:top_k]]
            
            st.write(f"πŸ“Š Cross-Encoder analyzing {len(pairs)} resume-job pairs...")
            
            # Get cross-encoder scores
            progress_bar = st.progress(0)
            scores = []
            
            def safe_sigmoid(x):
                """Safe sigmoid function that handles overflow"""
                if x >= 0:
                    exp_neg_x = np.exp(-x)
                    return 1 / (1 + exp_neg_x)
                else:
                    exp_x = np.exp(x)
                    return exp_x / (1 + exp_x)
            
            # Process in batches to avoid memory issues
            batch_size = 8
            for i in range(0, len(pairs), batch_size):
                batch = pairs[i:i+batch_size]
                # Get raw logits from cross-encoder
                batch_scores = self.cross_encoder.predict(batch)
                # Apply sigmoid to convert logits to [0,1] range
                batch_scores_sigmoid = [safe_sigmoid(score) for score in batch_scores]
                scores.extend(batch_scores_sigmoid)
                progress_bar.progress(min(1.0, (i + batch_size) / len(pairs)))
            
            progress_bar.empty()
            
            # Combine indices with scores and sort
            indexed_scores = list(zip(valid_indices, scores))
            indexed_scores.sort(key=lambda x: x[1], reverse=True)
            
            # Normalize scores to 0-0.7 range (highest score becomes 0.7)
            if scores and len(scores) > 0:
                max_score = max(scores)
                min_score = min(scores)
                
                if max_score > min_score:
                    # Scale to 0-0.7 range
                    normalized_indexed_scores = []
                    for idx, score in indexed_scores:
                        normalized_score = 0.7 * (score - min_score) / (max_score - min_score)
                        normalized_indexed_scores.append((idx, normalized_score))
                    indexed_scores = normalized_indexed_scores
                else:
                    # All scores are the same, give them all 0.35 (middle value)
                    indexed_scores = [(idx, 0.35) for idx, _ in indexed_scores]
            
            # Show completion message
            st.write(f"βœ… Cross-Encoder completed! Selected top {min(top_k, len(indexed_scores))} candidates.")
            st.write(f"πŸ“Š Cross-Encoder scores normalized to 0-0.7 range (highest: {indexed_scores[0][1]:.3f})")
            
            return indexed_scores[:top_k]
            
        except Exception as e:
            st.error(f"Error in cross-encoder re-ranking: {str(e)}")
            return [(idx, 0.0) for idx in top_50_indices[:top_k]]
    
    def add_bm25_scores(self, resume_texts, job_description, top_20_results):
        """Stage 3: Add BM25 scores to top 20 resumes"""
        try:
            st.write(f"πŸ”„ Calculating BM25 keyword scores for {len(top_20_results)} candidates...")
            
            # Get texts for top 20
            top_20_texts = [resume_texts[idx] for idx, _ in top_20_results]
            
            # Calculate BM25 scores
            bm25_scores = self.calculate_bm25_scores(top_20_texts, job_description)
            
            # Normalize BM25 scores to 0.1-0.2 range
            if bm25_scores and max(bm25_scores) > 0:
                max_bm25 = max(bm25_scores)
                min_bm25 = min(bm25_scores)
                if max_bm25 > min_bm25:
                    normalized_bm25 = [
                        0.1 + 0.1 * (score - min_bm25) / (max_bm25 - min_bm25) 
                        for score in bm25_scores
                    ]
                else:
                    normalized_bm25 = [0.15] * len(bm25_scores)
            else:
                normalized_bm25 = [0.15] * len(top_20_results)
            
            # Combine with existing results
            results_with_bm25 = []
            for i, (idx, cross_score) in enumerate(top_20_results):
                bm25_score = normalized_bm25[i] if i < len(normalized_bm25) else 0.15
                results_with_bm25.append((idx, cross_score, bm25_score))
            
            st.write(f"βœ… BM25 keyword matching completed!")
            
            return results_with_bm25
            
        except Exception as e:
            st.error(f"Error adding BM25 scores: {str(e)}")
            return [(idx, cross_score, 0.15) for idx, cross_score in top_20_results]
    
    def add_intent_scores(self, resume_texts, job_description, top_20_with_bm25):
        """Stage 4: Add LLM intent analysis scores"""
        try:
            results_with_intent = []
            progress_bar = st.progress(0)
            
            for i, (idx, cross_score, bm25_score) in enumerate(top_20_with_bm25):
                candidate_name = st.session_state.file_names[idx] if idx < len(st.session_state.file_names) else f"Resume_{idx}"
                intent_score, intent_text = self.analyze_intent(resume_texts[idx], job_description)
                
                # Print the intent analysis result
                st.write(f"πŸ“‹ **{candidate_name}**: Intent = **{intent_text}** (Score: {intent_score:.1f})")
                
                results_with_intent.append((idx, cross_score, bm25_score, intent_score))
                progress_bar.progress((i + 1) / len(top_20_with_bm25))
            
            progress_bar.empty()
            return results_with_intent
            
        except Exception as e:
            st.error(f"Error adding intent scores: {str(e)}")
            return [(idx, cross_score, bm25_score, 0.1) for idx, cross_score, bm25_score in top_20_with_bm25]
    
    def analyze_intent(self, resume_text, job_description):
        """Analyze candidate's intent using LLM"""
        try:
            # Truncate texts
            resume_snippet = resume_text[:1500] if len(resume_text) > 1500 else resume_text
            job_snippet = job_description[:800] if len(job_description) > 800 else job_description
            
            prompt = f"""You are a helpful HR assistant. Look at this candidate's resume and job posting.

The candidate is likely a good fit if they have ANY of these:
- Related work experience (even if different industry)
- Relevant technical skills
- Educational background that could apply
- Any transferable skills
- Similar job titles or responsibilities

Be generous in your assessment. Most candidates who made it this far are potentially suitable.

Answer "Yes" for most candidates unless they are completely unrelated.
Answer "No" only if absolutely no connection exists.

Job Posting:
{job_snippet}

Candidate Resume:
{resume_snippet}

Is this candidate suitable? Answer:"""
            
            response = generate_qwen3_response(
                prompt,
                st.session_state.qwen3_intent_tokenizer,
                st.session_state.qwen3_intent_model,
                max_new_tokens=20
            )
            
            # Debug: print the raw response
            print(f"Raw LLM response: '{response}'")
            
            # Parse response - look for the answer directly
            response_lower = response.lower().strip()
            if 'yes' in response_lower:
                return 0.1, "Yes"
            elif 'no' in response_lower:
                return 0.0, "No"
            else:
                # If no clear answer, default to "Yes" to be more lenient
                print(f"Unclear response, defaulting to Yes: '{response}'")
                return 0.1, "Yes"
                
        except Exception as e:
            st.warning(f"Error analyzing intent: {str(e)}")
            return 0.1, "Yes"  # Default to "Yes" instead of "Maybe"
    
    def calculate_final_scores(self, results_with_all_scores):
        """Stage 5: Calculate final combined scores"""
        try:
            st.write(f"πŸ”„ Computing final combined scores for {len(results_with_all_scores)} candidates...")
            
            final_results = []
            
            for idx, cross_score, bm25_score, intent_score in results_with_all_scores:
                # Cross-encoder scores are already in [0,1] range with logistic scoring
                normalized_cross = cross_score
                
                # Final Score = Cross-Encoder (0-0.7) + BM25 (0.1-0.2) + Intent (0-0.1)
                final_score = normalized_cross + bm25_score + intent_score
                
                final_results.append({
                    'index': idx,
                    'cross_encoder_score': normalized_cross,
                    'bm25_score': bm25_score,
                    'intent_score': intent_score,
                    'final_score': final_score
                })
            
            # Sort by final score
            final_results.sort(key=lambda x: x['final_score'], reverse=True)
            
            st.write(f"βœ… Final ranking completed! Candidates sorted by combined score.")
            
            return final_results
            
        except Exception as e:
            st.error(f"Error calculating final scores: {str(e)}")
            return []
    
    def generate_simple_explanation(self, score, semantic_score, bm25_score):
        """Generate simple explanation for the match (fallback)"""
        if score > 0.8:
            quality = "excellent"
        elif score > 0.6:
            quality = "strong"
        elif score > 0.4:
            quality = "moderate"
        else:
            quality = "limited"
        
        explanation = f"This candidate shows {quality} alignment with the position (score: {score:.2f}). "
        
        if semantic_score > bm25_score:
            explanation += f"The resume demonstrates strong conceptual relevance ({semantic_score:.2f}) suggesting good experience fit. "
        else:
            explanation += f"The resume has high keyword match ({bm25_score:.2f}) indicating direct skill alignment. "
        
        return explanation
    


def create_download_link(df, filename="resume_screening_results.csv"):
    """Create download link for results"""
    csv = df.to_csv(index=False)
    b64 = base64.b64encode(csv.encode()).decode()
    return f'<a href="data:file/csv;base64,{b64}" download="{filename}" class="download-btn">πŸ“₯ Download Results CSV</a>'

# Main App Interface
st.title("🎯 AI-Powered Resume Screener")
st.markdown("*Find the perfect candidates using BAAI/bge-large-en-v1.5 embeddings and Qwen3-14B explanations*")
st.markdown("---")

# Initialize screener
screener = ResumeScreener()

# Job Description Input
st.header("πŸ“ Step 1: Enter Job Description")
job_description = st.text_area(
    "Enter the complete job description or requirements:",
    height=150,
    placeholder="Paste the job description here, including required skills, experience, and qualifications..."
)

# Resume Input Options
st.header("πŸ“„ Step 2: Upload Resumes")

# Show loaded resumes indicator
if st.session_state.resume_texts:
    col1, col2 = st.columns([3, 1])
    with col1:
        st.info(f"πŸ“š {len(st.session_state.resume_texts)} resumes loaded and ready for analysis")
    with col2:
        if st.button("πŸ—‘οΈ Clear Resumes", type="secondary", help="Clear all loaded resumes to start fresh"):
            st.session_state.resume_texts = []
            st.session_state.file_names = []
            st.session_state.results = []
            st.session_state.current_job_description = ""
            st.rerun()

input_method = st.radio(
    "Choose input method:",
    ["πŸ“ Upload Files", "πŸ—‚οΈ Load from CSV Dataset"]
)

if input_method == "πŸ“ Upload Files":
    uploaded_files = st.file_uploader(
        "Upload resume files",
        type=["pdf", "docx", "txt"],
        accept_multiple_files=True,
        help="Supported formats: PDF, DOCX, TXT"
    )
    
    if uploaded_files:
        with st.spinner(f"πŸ”„ Processing {len(uploaded_files)} files..."):
            resume_texts = []
            file_names = []
            
            for file in uploaded_files:
                file_type = file.name.split('.')[-1].lower()
                
                with tempfile.NamedTemporaryFile(delete=False, suffix=f'.{file_type}') as tmp_file:
                    tmp_file.write(file.getvalue())
                    tmp_path = tmp_file.name
                
                text = screener.extract_text_from_file(tmp_path, file_type)
                if text.strip():
                    resume_texts.append(text)
                    file_names.append(file.name)
                
                os.unlink(tmp_path)
            
            st.session_state.resume_texts = resume_texts
            st.session_state.file_names = file_names
            
        if resume_texts:
            st.success(f"βœ… Successfully processed {len(resume_texts)} resumes")

elif input_method == "πŸ—‚οΈ Load from CSV Dataset":
    csv_file = st.file_uploader("Upload CSV file with resume data", type=["csv"])
    
    if csv_file:
        try:
            df = pd.read_csv(csv_file)
            st.write("**CSV Preview:**")
            st.dataframe(df.head())
            
            text_column = st.selectbox(
                "Select column containing resume text:",
                df.columns.tolist()
            )
            
            name_column = st.selectbox(
                "Select column for candidate names/IDs (optional):",
                ["Use Index"] + df.columns.tolist()
            )
            
            if st.button("πŸš€ Process CSV Data"):
                with st.spinner("πŸ”„ Processing CSV data..."):
                    resume_texts = []
                    file_names = []
                    
                    for idx, row in df.iterrows():
                        text = str(row[text_column])
                        if text and text.strip() and text.lower() != 'nan':
                            resume_texts.append(text)
                            
                            if name_column == "Use Index":
                                file_names.append(f"Resume_{idx}")
                            else:
                                file_names.append(str(row[name_column]))
                    
                    st.session_state.resume_texts = resume_texts
                    st.session_state.file_names = file_names
                
                if resume_texts:
                    st.success(f"βœ… Successfully loaded {len(resume_texts)} resumes from CSV")
                    
        except Exception as e:
            st.error(f"❌ Error processing CSV: {str(e)}")

# Processing and Results
st.header("πŸ” Step 3: Analyze Resumes")

# Run Advanced Pipeline Analysis
if st.button("πŸš€ Advanced Pipeline Analysis", 
             disabled=not (job_description and st.session_state.resume_texts),
             type="primary",
             help="Run the complete 5-stage advanced pipeline"):
    if len(st.session_state.resume_texts) == 0:
        st.error("❌ Please upload resumes first!")
    elif not job_description.strip():
        st.error("❌ Please enter a job description!")
    else:
        with st.spinner("πŸš€ Running Advanced Pipeline Analysis..."):
            try:
                # Run the advanced pipeline
                pipeline_results = screener.advanced_pipeline_ranking(
                    st.session_state.resume_texts, job_description, final_top_k=top_k
                )
                
                # Prepare results for display
                results = []
                
                for rank, result_data in enumerate(pipeline_results, 1):
                    idx = result_data['index']
                    name = st.session_state.file_names[idx]
                    text = st.session_state.resume_texts[idx]
                    
                    results.append({
                        'rank': rank,
                        'name': name,
                        'final_score': result_data['final_score'],
                        'cross_encoder_score': result_data['cross_encoder_score'],
                        'bm25_score': result_data['bm25_score'],
                        'intent_score': result_data['intent_score'],
                        'skills': [],
                        'text': text,
                        'text_preview': text[:500] + "..." if len(text) > 500 else text,
                        'explanation': None  # Will be filled with simple explanation
                    })
                
                # Add simple explanations
                for result in results:
                    result['explanation'] = screener.generate_simple_explanation(
                        result['final_score'], 
                        result['cross_encoder_score'], 
                        result['bm25_score']
                    )
                
                # Store in session state
                st.session_state.results = results
                st.session_state.current_job_description = job_description
                
                st.success(f"πŸš€ Advanced pipeline complete! Found top {len(st.session_state.results)} candidates.")
                
            except Exception as e:
                st.error(f"❌ Error during analysis: {str(e)}")

# Display Results
if st.session_state.results:
    st.header("πŸ† Top Candidates")
    
    # Create tabs for different views
    tab1, tab2, tab3 = st.tabs(["πŸ“Š Summary", "πŸ“‹ Detailed Analysis", "πŸ“ˆ Visualizations"])
    
    with tab1:
        # Create summary dataframe with new scoring system
        summary_data = []
        for result in st.session_state.results:
            # Map intent score to text
            intent_text = "Yes" if result['intent_score'] == 0.1 else "No"
            
            summary_data.append({
                "Rank": result['rank'],
                "Candidate": result['name'],
                "Final Score": f"{result['final_score']:.2f}",
                "Cross-Encoder": f"{result['cross_encoder_score']:.2f}",
                "BM25": f"{result['bm25_score']:.2f}",
                "Intent": f"{intent_text} ({result['intent_score']:.1f})"
            })
        
        summary_df = pd.DataFrame(summary_data)
        
        # Style the dataframe
        def color_scores(val):
            if isinstance(val, str) and any(char.isdigit() for char in val):
                try:
                    # Extract numeric value
                    numeric_val = float(''.join(c for c in val if c.isdigit() or c == '.'))
                    if 'Final Score' in val or numeric_val >= 1.0:
                        if numeric_val >= 1.2:
                            return 'background-color: #d4edda'
                        elif numeric_val >= 1.0:
                            return 'background-color: #fff3cd'
                        else:
                            return 'background-color: #f8d7da'
                    else:
                        if numeric_val >= 0.7:
                            return 'background-color: #d4edda'
                        elif numeric_val >= 0.5:
                            return 'background-color: #fff3cd'
                        else:
                            return 'background-color: #f8d7da'
                except:
                    pass
            return ''
        
        styled_df = summary_df.style.applymap(color_scores, subset=['Final Score', 'Cross-Encoder', 'BM25'])
        st.dataframe(styled_df, use_container_width=True)
        
        # Download link
        detailed_data = []
        for result in st.session_state.results:
            intent_text = "Yes" if result['intent_score'] == 0.1 else "No"
            
            detailed_data.append({
                "Rank": result['rank'],
                "Candidate": result['name'],
                "Final_Score": result['final_score'],
                "Cross_Encoder_Score": result['cross_encoder_score'],
                "BM25_Score": result['bm25_score'],
                "Intent_Score": result['intent_score'],
                "Intent_Analysis": intent_text,
                "AI_Explanation": result['explanation'],
                "Resume_Preview": result['text_preview']
            })
        
        download_df = pd.DataFrame(detailed_data)
        st.markdown(create_download_link(download_df), unsafe_allow_html=True)
    
    with tab2:
        # Detailed results with new scoring breakdown
        for result in st.session_state.results:
            intent_text = "Yes" if result['intent_score'] == 0.1 else "No"
            
            with st.expander(f"#{result['rank']}: {result['name']} (Final Score: {result['final_score']:.2f})"):
                col1, col2 = st.columns([1, 2])
                
                with col1:
                    st.metric("πŸ† Final Score", f"{result['final_score']:.2f}")
                    
                    st.write("**πŸ“Š Score Breakdown:**")
                    st.metric("🎯 Cross-Encoder", f"{result['cross_encoder_score']:.2f}", help="Semantic relevance (0-0.7)")
                    st.metric("πŸ”€ BM25 Keywords", f"{result['bm25_score']:.2f}", help="Keyword matching (0.1-0.2)")
                    st.metric("πŸ€– Intent Analysis", f"{intent_text} ({result['intent_score']:.2f})", help="Job seeking likelihood (0-0.1)")
                
                with col2:
                    st.write("**πŸ’‘ AI-Generated Match Analysis:**")
                    st.info(result['explanation'])
                    
                    st.write("**πŸ“„ Resume Preview:**")
                    st.text_area("", result['text_preview'], height=200, disabled=True, key=f"preview_{result['rank']}")
    
    with tab3:
        # Score visualization
        if len(st.session_state.results) > 1:
            # Bar chart
            st.subheader("Score Comparison")
            
            chart_data = pd.DataFrame({
                'Candidate': [r['name'][:20] + '...' if len(r['name']) > 20 else r['name'] 
                             for r in st.session_state.results],
                'Final Score': [r['final_score'] for r in st.session_state.results],
                'Cross-Encoder': [r['cross_encoder_score'] for r in st.session_state.results],
                'BM25': [r['bm25_score'] for r in st.session_state.results],
                'Intent': [r['intent_score'] for r in st.session_state.results]
            })
            
            st.bar_chart(chart_data.set_index('Candidate'))
            
            # Score distribution
            col1, col2 = st.columns(2)
            
            with col1:
                st.subheader("Score Distribution")
                score_ranges = {
                    'Excellent (β‰₯1.2)': sum(1 for r in st.session_state.results if r['final_score'] >= 1.2),
                    'Good (1.0-1.2)': sum(1 for r in st.session_state.results if 1.0 <= r['final_score'] < 1.2),
                    'Fair (0.8-1.0)': sum(1 for r in st.session_state.results if 0.8 <= r['final_score'] < 1.0),
                    'Poor (<0.8)': sum(1 for r in st.session_state.results if r['final_score'] < 0.8),
                }
                
                dist_df = pd.DataFrame({
                    'Range': score_ranges.keys(),
                    'Count': score_ranges.values()
                })
                st.bar_chart(dist_df.set_index('Range'))
            
            with col2:
                st.subheader("Average Scores")
                avg_final = np.mean([r['final_score'] for r in st.session_state.results])
                avg_cross = np.mean([r['cross_encoder_score'] for r in st.session_state.results])
                avg_bm25 = np.mean([r['bm25_score'] for r in st.session_state.results])
                avg_intent = np.mean([r['intent_score'] for r in st.session_state.results])
                
                st.metric("Average Final Score", f"{avg_final:.2f}")
                st.metric("Average Cross-Encoder", f"{avg_cross:.2f}")
                st.metric("Average BM25", f"{avg_bm25:.2f}")
                st.metric("Average Intent", f"{avg_intent:.2f}")

# Memory cleanup
st.markdown("---")
st.subheader("🧹 Reset Application")
col1, col2, col3 = st.columns([1, 1, 3])
with col1:
    if st.button("πŸ—‘οΈ Clear Resumes Only", type="secondary", help="Clear only the loaded resumes"):
        st.session_state.resume_texts = []
        st.session_state.file_names = []
        st.session_state.results = []
        st.session_state.current_job_description = ""
        st.success("βœ… Resumes cleared!")
        st.rerun()

with col2:
    if st.button("🧹 Clear Everything", type="primary", help="Clear all data and free memory"):
        st.session_state.resume_texts = []
        st.session_state.file_names = []
        st.session_state.results = []
        st.session_state.current_job_description = ""
        
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        gc.collect()
        st.success("βœ… Everything cleared!")
        st.rerun()

# Footer
st.markdown("---")
st.markdown(
    """
    <div style='text-align: center; color: #666;'>
        πŸš€ Powered by BAAI/bge-large-en-v1.5 & Qwen3-1.7B | Built with Streamlit
    </div>
    """, 
    unsafe_allow_html=True
)