|
import streamlit as st |
|
import pdfplumber |
|
import io |
|
import spacy |
|
from transformers import pipeline |
|
import subprocess |
|
import sys |
|
|
|
st.set_page_config( |
|
page_title="Resume Screener & Skill Extractor", |
|
page_icon="π", |
|
layout="wide" |
|
) |
|
|
|
|
|
@st.cache_resource |
|
def download_spacy_model(): |
|
try: |
|
nlp = spacy.load("en_core_web_sm") |
|
except OSError: |
|
subprocess.check_call([sys.executable, "-m", "spacy", "download", "en_core_web_sm"]) |
|
nlp = spacy.load("en_core_web_sm") |
|
return nlp |
|
|
|
|
|
@st.cache_resource |
|
def load_models(): |
|
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") |
|
nlp = download_spacy_model() |
|
return summarizer, nlp |
|
|
|
|
|
summarizer, nlp = load_models() |
|
|
|
|
|
job_descriptions = { |
|
"Software Engineer": { |
|
"skills": ["python", "java", "javascript", "sql", "algorithms", "data structures", |
|
"git", "cloud", "web development", "software development", "coding"], |
|
"description": "Looking for software engineers with strong programming skills and experience in software development." |
|
}, |
|
"Interaction Designer": { |
|
"skills": ["ui", "ux", "user research", "wireframing", "prototyping", "figma", |
|
"sketch", "adobe", "design thinking", "interaction design"], |
|
"description": "Seeking interaction designers with expertise in user experience and interface design." |
|
}, |
|
"Data Scientist": { |
|
"skills": ["python", "r", "statistics", "machine learning", "data analysis", |
|
"sql", "tensorflow", "pytorch", "pandas", "numpy"], |
|
"description": "Looking for data scientists with strong analytical and machine learning skills." |
|
} |
|
} |
|
|
|
def extract_text_from_pdf(pdf_file): |
|
text = "" |
|
with pdfplumber.open(pdf_file) as pdf: |
|
for page in pdf.pages: |
|
text += page.extract_text() or "" |
|
return text |
|
|
|
def analyze_resume(text, job_title): |
|
|
|
doc = nlp(text.lower()) |
|
found_skills = [] |
|
required_skills = job_descriptions[job_title]["skills"] |
|
|
|
for skill in required_skills: |
|
if skill in text.lower(): |
|
found_skills.append(skill) |
|
|
|
|
|
chunks = [text[i:i + 1000] for i in range(0, len(text), 1000)] |
|
summaries = [] |
|
for chunk in chunks[:3]: |
|
summary = summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]["summary_text"] |
|
summaries.append(summary) |
|
|
|
return found_skills, " ".join(summaries) |
|
|
|
|
|
st.title("π Resume Screener & Skill Extractor") |
|
|
|
|
|
st.markdown(""" |
|
This app helps recruiters analyze resumes by: |
|
- Extracting relevant skills for specific job positions |
|
- Generating a concise summary of the candidate's background |
|
- Identifying skill gaps for the selected role |
|
""") |
|
|
|
|
|
col1, col2 = st.columns([2, 1]) |
|
|
|
with col1: |
|
|
|
uploaded_file = st.file_uploader("Upload Resume (PDF)", type=["pdf"]) |
|
|
|
with col2: |
|
|
|
job_title = st.selectbox("Select Job Position", list(job_descriptions.keys())) |
|
|
|
|
|
if job_title: |
|
st.info(f"**Required Skills:**\n" + |
|
"\n".join([f"- {skill.title()}" for skill in job_descriptions[job_title]["skills"]])) |
|
|
|
if uploaded_file and job_title: |
|
try: |
|
|
|
with st.spinner("Analyzing resume..."): |
|
|
|
text = extract_text_from_pdf(uploaded_file) |
|
|
|
|
|
found_skills, summary = analyze_resume(text, job_title) |
|
|
|
|
|
tab1, tab2, tab3 = st.tabs(["π Skills Match", "π Resume Summary", "π― Skills Gap"]) |
|
|
|
with tab1: |
|
|
|
st.subheader("π― Matched Skills") |
|
if found_skills: |
|
for skill in found_skills: |
|
st.success(f"β
{skill.title()}") |
|
|
|
|
|
match_percentage = len(found_skills) / len(job_descriptions[job_title]["skills"]) * 100 |
|
st.metric("Skills Match", f"{match_percentage:.1f}%") |
|
else: |
|
st.warning("No direct skill matches found.") |
|
|
|
with tab2: |
|
|
|
st.subheader("π Resume Summary") |
|
st.write(summary) |
|
|
|
with tab3: |
|
|
|
st.subheader("π Skills to Develop") |
|
missing_skills = [skill for skill in job_descriptions[job_title]["skills"] |
|
if skill not in found_skills] |
|
if missing_skills: |
|
for skill in missing_skills: |
|
st.warning(f"β {skill.title()}") |
|
else: |
|
st.success("Great! The candidate has all the required skills!") |
|
|
|
except Exception as e: |
|
st.error(f"An error occurred while processing the resume: {str(e)}") |
|
|
|
|
|
st.markdown("---") |
|
st.markdown("Made with β€οΈ using Streamlit and Hugging Face") |
|
|