import streamlit as st import pdfplumber import io import spacy from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import subprocess import sys import torch import re import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go from datetime import datetime import dateparser from sentence_transformers import SentenceTransformer import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from sklearn.metrics.pairwise import cosine_similarity import faiss import requests from bs4 import BeautifulSoup import networkx as nx import Levenshtein import json import matplotlib.pyplot as plt from io import BytesIO import base64 from sentence_transformers import util # Download NLTK resources @st.cache_resource def download_nltk_resources(): nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') nltk.download('averaged_perceptron_tagger') download_nltk_resources() st.set_page_config( page_title="Resume Screener & Skill Extractor", page_icon="📄", layout="wide" ) # Download spaCy model if not already downloaded @st.cache_resource def download_spacy_model(): try: nlp = spacy.load("en_core_web_sm") except OSError: subprocess.check_call([sys.executable, "-m", "spacy", "download", "en_core_web_sm"]) nlp = spacy.load("en_core_web_sm") return nlp # Load the NLP models @st.cache_resource def load_models(): summarizer = pipeline("summarization", model="facebook/bart-large-cnn") nlp = download_spacy_model() # Load sentence transformer model for semantic matching sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2') # Load Qwen3-8B model for career advice try: device = "cuda" if torch.cuda.is_available() else "cpu" qwen_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B") qwen_model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen3-8B", torch_dtype=torch.float16 if device == "cuda" else torch.float32, device_map="auto" ) except Exception as e: st.error(f"Failed to load Qwen3-8B model: {str(e)}") qwen_tokenizer = None qwen_model = None return summarizer, nlp, qwen_tokenizer, qwen_model, sentence_model # Initialize models summarizer, nlp, qwen_tokenizer, qwen_model, sentence_model = load_models() # Job descriptions and required skills job_descriptions = { "Software Engineer": { "skills": ["python", "java", "javascript", "sql", "algorithms", "data structures", "git", "cloud", "web development", "software development", "coding"], "description": "Looking for software engineers with strong programming skills and experience in software development.", "must_have": ["python", "git", "algorithms"], "nice_to_have": ["cloud", "java", "javascript"], "seniority_levels": { "Junior": "0-2 years of experience, familiar with basic programming concepts", "Mid-level": "3-5 years of experience, proficient in multiple languages, experience with system design", "Senior": "6+ years of experience, expert in software architecture, mentoring, and leading projects" } }, "Interaction Designer": { "skills": ["ui", "ux", "user research", "wireframing", "prototyping", "figma", "sketch", "adobe", "design thinking", "interaction design"], "description": "Seeking interaction designers with expertise in user experience and interface design.", "must_have": ["ui", "ux", "prototyping"], "nice_to_have": ["figma", "sketch", "user research"], "seniority_levels": { "Junior": "0-2 years of experience, basic design skills, understanding of UX principles", "Mid-level": "3-5 years of experience, strong portfolio, experience with user research", "Senior": "6+ years of experience, leadership in design systems, driving design strategy" } }, "Data Scientist": { "skills": ["python", "r", "statistics", "machine learning", "data analysis", "sql", "tensorflow", "pytorch", "pandas", "numpy"], "description": "Looking for data scientists with strong analytical and machine learning skills.", "must_have": ["python", "statistics", "machine learning"], "nice_to_have": ["tensorflow", "pytorch", "r"], "seniority_levels": { "Junior": "0-2 years of experience, basic knowledge of statistics and ML algorithms", "Mid-level": "3-5 years of experience, model development, feature engineering", "Senior": "6+ years of experience, advanced ML techniques, research experience" } }, "Product Manager": { "skills": ["product strategy", "roadmap planning", "user stories", "agile", "market research", "stakeholder management", "analytics", "user experience", "a/b testing", "prioritization"], "description": "Seeking product managers who can drive product vision, strategy, and execution.", "must_have": ["product strategy", "roadmap planning", "stakeholder management"], "nice_to_have": ["agile", "analytics", "a/b testing"], "seniority_levels": { "Junior": "0-2 years of experience, assisting with feature definition and user stories", "Mid-level": "3-5 years of experience, owning products/features, market research", "Senior": "6+ years of experience, defining product vision, managing teams, strategic planning" } }, "DevOps Engineer": { "skills": ["linux", "aws", "docker", "kubernetes", "ci/cd", "terraform", "ansible", "monitoring", "scripting", "automation", "security"], "description": "Looking for DevOps engineers to build and maintain infrastructure and deployment pipelines.", "must_have": ["linux", "docker", "ci/cd"], "nice_to_have": ["kubernetes", "terraform", "aws"], "seniority_levels": { "Junior": "0-2 years of experience, basic system administration, scripting", "Mid-level": "3-5 years of experience, container orchestration, infrastructure as code", "Senior": "6+ years of experience, architecture design, security, team leadership" } } } def extract_text_from_pdf(pdf_file): text = "" with pdfplumber.open(pdf_file) as pdf: for page in pdf.pages: text += page.extract_text() or "" return text def analyze_resume(text, job_title): # Extract relevant skills doc = nlp(text.lower()) found_skills = [] required_skills = job_descriptions[job_title]["skills"] for skill in required_skills: if skill in text.lower(): found_skills.append(skill) # Generate summary chunks = [text[i:i + 1000] for i in range(0, len(text), 1000)] summaries = [] for chunk in chunks[:3]: # Process first 3000 characters to avoid token limits summary = summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]["summary_text"] summaries.append(summary) # Extract experience timeline experiences = extract_experience(text) # Calculate semantic match score match_score = semantic_matching(text, job_title) # Estimate seniority seniority, years_experience, leadership_count, must_have_percentage = estimate_seniority(experiences, found_skills, job_title) # Extract skill levels skill_levels = extract_skill_levels(text, found_skills) # Check for timeline inconsistencies inconsistencies = check_timeline_inconsistencies(experiences) # Verify companies company_verification = verify_companies(experiences) # Predict career trajectory career_prediction = predict_career_trajectory(experiences, seniority, job_title) return { 'found_skills': found_skills, 'summary': " ".join(summaries), 'experiences': experiences, 'match_score': match_score, 'seniority': seniority, 'years_experience': years_experience, 'skill_levels': skill_levels, 'inconsistencies': inconsistencies, 'company_verification': company_verification, 'career_prediction': career_prediction } def generate_career_advice(resume_text, job_title, found_skills, missing_skills): if qwen_model is None or qwen_tokenizer is None: return "Career advice model not available. Please check the model installation." # Create a prompt for the model prompt = f""" You are a professional career advisor. Based on the resume and the target job position, provide personalized advice on skills to develop and suggest projects that would help the candidate become a better fit for the position. Resume summary: {resume_text[:1000]}... Target position: {job_title} Job requirements: {job_descriptions[job_title]['description']} Skills the candidate has: {', '.join(found_skills)} Skills the candidate needs to develop: {', '.join(missing_skills)} Provide the following: 1. Specific advice on how to develop the missing skills 2. 3-5 project ideas that would showcase these skills 3. Resources for learning (courses, books, websites) """ # Generate advice using Qwen3-8B try: inputs = qwen_tokenizer(prompt, return_tensors="pt").to(qwen_model.device) with torch.no_grad(): outputs = qwen_model.generate( **inputs, max_new_tokens=1024, temperature=0.7, top_p=0.9, do_sample=True ) advice = qwen_tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) return advice except Exception as e: return f"Failed to generate career advice: {str(e)}" # Streamlit UI st.title("📄 Resume Screener & Skill Extractor") # Add description st.markdown(""" This app helps recruiters analyze resumes by: - Extracting relevant skills for specific job positions - Generating a concise summary of the candidate's background - Identifying skill gaps for the selected role - Providing personalized career advice and project recommendations """) # Create two columns col1, col2 = st.columns([2, 1]) with col1: # File upload uploaded_file = st.file_uploader("Upload Resume (PDF)", type=["pdf"]) with col2: # Job selection job_title = st.selectbox("Select Job Position", list(job_descriptions.keys())) # Show job description if job_title: st.info(f"**Required Skills:**\n" + "\n".join([f"- {skill.title()}" for skill in job_descriptions[job_title]["skills"]])) if uploaded_file and job_title: try: # Show spinner while processing with st.spinner("Analyzing resume..."): # Extract text from PDF text = extract_text_from_pdf(uploaded_file) # Analyze resume resume_data = analyze_resume(text, job_title) # Calculate missing skills missing_skills = [skill for skill in job_descriptions[job_title]["skills"] if skill not in resume_data['found_skills']] # Display results in tabs tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs([ "📊 Skills Match", "📝 Resume Summary", "🎯 Skills Gap", "👨‍💼 Career Path", "🔍 Authentication", "🚀 Career Advice" ]) with tab1: # First create columns for skill match percentage and semantic match col1, col2 = st.columns(2) with col1: # Display matched skills st.subheader("🎯 Matched Skills") if resume_data['found_skills']: for skill in resume_data['found_skills']: # Show skill with proficiency level level = resume_data['skill_levels'].get(skill, 'intermediate') level_emoji = "🟢" if level == 'advanced' else "🟡" if level == 'intermediate' else "🟠" st.success(f"{level_emoji} {skill.title()} ({level.title()})") # Calculate match percentage match_percentage = len(resume_data['found_skills']) / len(job_descriptions[job_title]["skills"]) * 100 st.metric("Skills Match", f"{match_percentage:.1f}%") else: st.warning("No direct skill matches found.") with col2: # Display semantic match score st.subheader("💡 Semantic Match") st.metric("Overall Match Score", f"{resume_data['match_score']:.1f}%") # Display must-have skills match must_have_skills = job_descriptions[job_title]["must_have"] must_have_count = sum(1 for skill in must_have_skills if skill in resume_data['found_skills']) must_have_percentage = (must_have_count / len(must_have_skills)) * 100 st.write("Must-have skills:") st.progress(must_have_percentage / 100) st.write(f"{must_have_count} out of {len(must_have_skills)} ({must_have_percentage:.1f}%)") # Professional level assessment st.subheader("🧠 Seniority Assessment") st.info(f"**{resume_data['seniority']}** ({resume_data['years_experience']:.1f} years equivalent experience)") st.write(job_descriptions[job_title]["seniority_levels"][resume_data['seniority']]) with tab2: # Display resume summary st.subheader("📝 Resume Summary") st.write(resume_data['summary']) # Display experience timeline st.subheader("⏳ Experience Timeline") if resume_data['experiences']: # Convert experiences to dataframe for display exp_data = [] for exp in resume_data['experiences']: if 'start_date' in exp and 'end_date' in exp: exp_data.append({ 'Company': exp['company'], 'Role': exp['role'], 'Start Date': exp['start_date'].strftime('%b %Y') if exp['start_date'] else 'Unknown', 'End Date': exp['end_date'].strftime('%b %Y') if exp['end_date'] != datetime.now() else 'Present', 'Duration (months)': exp.get('duration_months', 'Unknown') }) else: exp_data.append({ 'Company': exp['company'], 'Role': exp['role'], 'Duration': exp.get('duration', 'Unknown') }) if exp_data: exp_df = pd.DataFrame(exp_data) st.dataframe(exp_df) # Create a timeline visualization if dates are available timeline_data = [exp for exp in resume_data['experiences'] if 'start_date' in exp and 'end_date' in exp] if timeline_data: # Sort by start date timeline_data = sorted(timeline_data, key=lambda x: x['start_date']) # Create figure fig = go.Figure() for i, exp in enumerate(timeline_data): fig.add_trace(go.Bar( x=[(exp['end_date'] - exp['start_date']).days / 30], # Duration in months y=[exp['company']], orientation='h', name=exp['role'], hovertext=f"{exp['role']} at {exp['company']}
{exp['start_date'].strftime('%b %Y')} - {exp['end_date'].strftime('%b %Y') if exp['end_date'] != datetime.now() else 'Present'}
Duration: {exp.get('duration_months', 0)} months", marker=dict(color=px.colors.qualitative.Plotly[i % len(px.colors.qualitative.Plotly)]) )) fig.update_layout( title="Career Timeline", xaxis_title="Duration (months)", yaxis_title="Company", height=400, margin=dict(l=0, r=0, b=0, t=30) ) st.plotly_chart(fig, use_container_width=True) else: st.warning("No work experience data could be extracted.") with tab3: # Display missing skills st.subheader("📌 Skills to Develop") # Create two columns col1, col2 = st.columns(2) with col1: # Missing skills if missing_skills: for skill in missing_skills: st.warning(f"➖ {skill.title()}") else: st.success("Great! The candidate has all the required skills!") with col2: # Skills gap analysis st.subheader("🔍 Gap Analysis") # Show must-have skills that are missing missing_must_have = [skill for skill in job_descriptions[job_title]["must_have"] if skill not in resume_data['found_skills']] if missing_must_have: st.error("**Critical Skills Missing:**") for skill in missing_must_have: st.write(f"- {skill.title()}") st.markdown("These are must-have skills for this position.") else: st.success("Candidate has all the must-have skills for this position!") # Show nice-to-have skills gap missing_nice_to_have = [skill for skill in job_descriptions[job_title]["nice_to_have"] if skill not in resume_data['found_skills']] if missing_nice_to_have: st.warning("**Nice-to-Have Skills Missing:**") for skill in missing_nice_to_have: st.write(f"- {skill.title()}") else: st.success("Candidate has all the nice-to-have skills!") with tab4: # Display career path insights st.subheader("👨‍💼 Career Trajectory") # Show career prediction st.info(resume_data['career_prediction']) # Show experience trends st.subheader("📈 Experience Analysis") # Check for job hopping if len(resume_data['experiences']) >= 3: # Calculate average job duration durations = [exp.get('duration_months', 0) for exp in resume_data['experiences'] if 'duration_months' in exp] if durations: avg_duration = sum(durations) / len(durations) if avg_duration < 12: st.warning(f"🚩 **Frequent Job Changes**: Average job duration is only {avg_duration:.1f} months") elif avg_duration < 24: st.warning(f"⚠️ **Moderate Job Hopping**: Average job duration is {avg_duration:.1f} months") else: st.success(f"✅ **Stable Employment**: Average job duration is {avg_duration:.1f} months") # Show inconsistencies if any if resume_data['inconsistencies']: st.subheader("⚠️ Timeline Inconsistencies") for issue in resume_data['inconsistencies']: if issue['type'] == 'overlap': st.warning(issue['description']) elif issue['type'] == 'gap': st.info(issue['description']) with tab5: # Display authentication signals st.subheader("🔍 Resume Authentication") # Company verification results st.write("**Company Verification Results:**") if resume_data['company_verification']: # Count suspicious companies suspicious_count = sum(1 for v in resume_data['company_verification'] if v['status'] == 'suspicious') if suspicious_count == 0: st.success("✅ All companies mentioned in the resume passed basic verification") else: st.warning(f"⚠️ {suspicious_count} companies require further verification") # Display verification details verification_data = [{ 'Company': v['company'], 'Status': v['status'].title(), 'Notes': v['reason'] } for v in resume_data['company_verification']] st.dataframe(pd.DataFrame(verification_data)) else: st.info("No company information found for verification.") # Timeline consistency check st.write("**Timeline Consistency Check:**") if not resume_data['inconsistencies']: st.success("✅ No timeline inconsistencies detected") else: st.warning(f"⚠️ {len(resume_data['inconsistencies'])} timeline inconsistencies found") for issue in resume_data['inconsistencies']: st.write(f"- {issue['description']}") with tab6: # Display career advice st.subheader("🚀 Career Advice and Project Recommendations") if st.button("Generate Career Advice"): with st.spinner("Generating personalized career advice..."): advice = generate_career_advice(text, job_title, resume_data['found_skills'], missing_skills) st.markdown(advice) except Exception as e: st.error(f"An error occurred while processing the resume: {str(e)}") # Add footer st.markdown("---") st.markdown("Made with ❤️ using Streamlit and Hugging Face") # Semantic matching between resume and job description def semantic_matching(resume_text, job_title): job_desc = job_descriptions[job_title]["description"] # Encode texts using sentence transformers resume_embedding = sentence_model.encode(resume_text, convert_to_tensor=True) job_embedding = sentence_model.encode(job_desc, convert_to_tensor=True) # Calculate cosine similarity cos_sim = cosine_similarity( resume_embedding.cpu().numpy().reshape(1, -1), job_embedding.cpu().numpy().reshape(1, -1) )[0][0] return cos_sim * 100 # Convert to percentage # Extract experience timeline from resume def extract_experience(text): # Pattern to find work experience entries # Look for patterns like "Company Name | Role | Jan 2020 - Present" exp_pattern = r"(?i)(.*?(?:inc|llc|ltd|company|corp|corporation|group)?)\s*(?:[|•-]\s*)?(.*?)(?:[|•-]\s*)((?:jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)[\w\s,]*\d{4}\s*(?:-|to|–)\s*(?:(?:jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)[\w\s,]*\d{4}|present))" experiences = [] for match in re.finditer(exp_pattern, text, re.IGNORECASE): company = match.group(1).strip() role = match.group(2).strip() duration = match.group(3).strip() # Parse dates try: date_range = duration.split('-') if '-' in duration else duration.split('to') if 'to' in duration else duration.split('–') start_date = dateparser.parse(date_range[0].strip()) if 'present' in date_range[1].lower(): end_date = datetime.now() else: end_date = dateparser.parse(date_range[1].strip()) if start_date and end_date: # Calculate duration in months months = (end_date.year - start_date.year) * 12 + (end_date.month - start_date.month) experiences.append({ 'company': company, 'role': role, 'start_date': start_date, 'end_date': end_date, 'duration_months': months }) except: # If date parsing fails, still include the experience without dates experiences.append({ 'company': company, 'role': role, 'duration': duration }) return experiences # Estimate seniority based on experience and skills def estimate_seniority(experiences, found_skills, job_title): # Calculate total experience in years total_months = sum(exp.get('duration_months', 0) for exp in experiences if 'duration_months' in exp) total_years = total_months / 12 # Count leadership keywords in roles leadership_keywords = ['lead', 'senior', 'manager', 'head', 'principal', 'architect', 'director'] leadership_count = 0 for exp in experiences: role = exp.get('role', '').lower() for keyword in leadership_keywords: if keyword in role: leadership_count += 1 break # Calculate skill match percentage for must-have skills must_have_skills = job_descriptions[job_title]["must_have"] must_have_count = sum(1 for skill in must_have_skills if skill in [s.lower() for s in found_skills]) must_have_percentage = (must_have_count / len(must_have_skills)) * 100 if must_have_skills else 0 # Determine seniority level if total_years < 3: seniority = "Junior" elif total_years < 6: seniority = "Mid-level" else: seniority = "Senior" # Adjust based on leadership roles and skill match if leadership_count >= 2 and seniority != "Senior": seniority = "Senior" if total_years >= 4 else seniority if must_have_percentage < 50 and seniority == "Senior": seniority = "Mid-level" return seniority, total_years, leadership_count, must_have_percentage # Check for timeline inconsistencies def check_timeline_inconsistencies(experiences): if not experiences: return [] inconsistencies = [] sorted_experiences = sorted( [exp for exp in experiences if 'start_date' in exp and 'end_date' in exp], key=lambda x: x['start_date'] ) for i in range(len(sorted_experiences) - 1): current = sorted_experiences[i] next_exp = sorted_experiences[i + 1] # Check for overlapping full-time roles if current['end_date'] > next_exp['start_date']: overlap_months = (current['end_date'].year - next_exp['start_date'].year) * 12 + \ (current['end_date'].month - next_exp['start_date'].month) if overlap_months > 1: # Allow 1 month overlap for transitions inconsistencies.append({ 'type': 'overlap', 'description': f"Overlapping roles: {current['company']} and {next_exp['company']} " + f"overlap by {overlap_months} months" }) # Check for gaps in employment for i in range(len(sorted_experiences) - 1): current = sorted_experiences[i] next_exp = sorted_experiences[i + 1] gap_months = (next_exp['start_date'].year - current['end_date'].year) * 12 + \ (next_exp['start_date'].month - current['end_date'].month) if gap_months > 3: # Flag gaps longer than 3 months inconsistencies.append({ 'type': 'gap', 'description': f"Employment gap of {gap_months} months between " + f"{current['company']} and {next_exp['company']}" }) return inconsistencies # Verify company existence (simplified version) def verify_companies(experiences): verification_results = [] for exp in experiences: company = exp.get('company', '') if not company: continue # Simple heuristic - companies less than 3 characters are suspicious if len(company) < 3: verification_results.append({ 'company': company, 'status': 'suspicious', 'reason': 'Company name too short' }) continue # Check if company matches common fake patterns fake_patterns = ['abc company', 'xyz corp', 'my company', 'personal project'] if any(pattern in company.lower() for pattern in fake_patterns): verification_results.append({ 'company': company, 'status': 'suspicious', 'reason': 'Matches pattern of fake company names' }) continue # In a real implementation, you'd call an API to check if the company exists # For this demo, we'll just mark all others as verified verification_results.append({ 'company': company, 'status': 'verified', 'reason': 'Passed basic verification checks' }) return verification_results # Extract skill levels from text def extract_skill_levels(text, skills): skill_levels = {} proficiency_indicators = { 'basic': ['basic', 'familiar', 'beginner', 'fundamentals', 'exposure'], 'intermediate': ['intermediate', 'proficient', 'experienced', 'competent', 'skilled'], 'advanced': ['advanced', 'expert', 'mastery', 'specialist', 'lead', 'senior'] } for skill in skills: # Look for sentences containing the skill sentences = re.findall(r'[^.!?]*%s[^.!?]*[.!?]' % re.escape(skill), text.lower()) # Default level level = 'intermediate' # Check for years of experience indicators years_pattern = re.compile(r'(\d+)\s*(?:\+)?\s*years?(?:\s+of)?\s+(?:experience|exp)?\s+(?:with|in|using)?\s+%s' % re.escape(skill), re.IGNORECASE) for sentence in sentences: years_match = years_pattern.search(sentence) if years_match: years = int(years_match.group(1)) if years < 2: level = 'basic' elif years < 5: level = 'intermediate' else: level = 'advanced' break # Check for proficiency indicators if level == 'intermediate': # Only override if not already set by years for level_name, indicators in proficiency_indicators.items(): for indicator in indicators: pattern = re.compile(r'%s\s+(?:\w+\s+){0,3}%s' % (indicator, re.escape(skill)), re.IGNORECASE) if any(pattern.search(sentence) for sentence in sentences): level = level_name break if level != 'intermediate': break skill_levels[skill] = level return skill_levels # Generate career trajectory prediction def predict_career_trajectory(experiences, seniority, job_title): if not experiences: return "Unable to predict trajectory due to insufficient experience data." # Extract roles in chronological order roles = [exp.get('role', '').lower() for exp in experiences if 'role' in exp] # If less than 2 roles, not enough data for prediction if len(roles) < 2: if seniority == "Junior": next_role = "Mid-level " + job_title elif seniority == "Mid-level": next_role = "Senior " + job_title else: # Senior leadership_titles = { "Software Engineer": "Technical Lead or Engineering Manager", "Data Scientist": "Lead Data Scientist or Data Science Manager", "Interaction Designer": "Design Lead or UX Director", "Product Manager": "Senior Product Manager or Director of Product", "DevOps Engineer": "DevOps Lead or Infrastructure Architect" } next_role = leadership_titles.get(job_title, f"Director of {job_title}") return f"Based on current seniority level, the next logical role could be: {next_role}" # Check for upward mobility patterns progression_indicators = ['junior', 'senior', 'lead', 'manager', 'director', 'vp', 'head', 'chief'] current_level = -1 for role in roles: for i, indicator in enumerate(progression_indicators): if indicator in role: if i > current_level: current_level = i # Predict next role based on current level if current_level < len(progression_indicators) - 1: next_level = progression_indicators[current_level + 1] # Map to specific job titles if next_level == 'senior' and 'senior' not in roles[-1].lower(): next_role = f"Senior {job_title}" elif next_level == 'lead': next_role = f"{job_title} Lead" elif next_level == 'manager': if job_title == "Software Engineer": next_role = "Engineering Manager" else: next_role = f"{job_title} Manager" elif next_level == 'director': next_role = f"Director of {job_title}s" elif next_level == 'vp': next_role = f"VP of {job_title}s" elif next_level == 'head': next_role = f"Head of {job_title}" elif next_level == 'chief': if job_title == "Software Engineer": next_role = "CTO (Chief Technology Officer)" elif job_title == "Data Scientist": next_role = "Chief Data Officer" elif job_title == "Product Manager": next_role = "Chief Product Officer" else: next_role = f"Chief {job_title} Officer" else: next_role = f"{next_level.title()} {job_title}" else: next_role = "Executive Leadership or Strategic Advisory roles" return f"Based on career progression, the next logical role could be: {next_role}"