File size: 10,078 Bytes
b63d954
 
64a8c4a
3b06717
5b86980
b8ff20e
c9ff2a7
 
c31b527
0444752
3b06717
 
 
b63d954
0444752
 
3bc2967
b63d954
 
c31b527
 
 
 
 
 
 
 
5b86980
c31b527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0444752
 
 
 
 
6dfd6d2
 
0444752
c31b527
3bc2967
 
c31b527
 
 
 
6dfd6d2
3bc2967
0444752
 
c31b527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bc2967
b8ff20e
 
 
 
 
6dfd6d2
b8ff20e
 
 
 
c31b527
3bc2967
 
b5cc6a6
6dfd6d2
 
b8ff20e
0444752
b8ff20e
 
b5cc6a6
 
 
b8ff20e
b5cc6a6
 
6dfd6d2
c31b527
6dfd6d2
b8ff20e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0444752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b63d954
 
0444752
b63d954
 
5b86980
 
0444752
5b86980
c31b527
 
 
 
 
 
 
 
 
 
c9ff2a7
 
 
 
 
 
 
 
5b86980
0444752
 
5b86980
c9ff2a7
 
 
 
 
 
3b06717
0444752
 
5b86980
0444752
5b86980
 
 
 
0444752
b8ff20e
0444752
c31b527
 
0444752
 
 
 
5b86980
0444752
5b86980
0444752
3b06717
0444752
3b06717
b63d954
5b86980
 
0444752
b63d954
 
 
0444752
b63d954
0444752
 
 
 
 
 
 
b63d954
 
 
 
3b06717
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import requests
import gradio as gr
import os
import torch
import json
import time
import tempfile
import shutil
import librosa
from transformers import AutoTokenizer, AutoModelForCausalLM

# Check if CUDA is available and set the device accordingly
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# API URLs and headers
AUDIO_API_URL = "https://api-inference.huggingface.co/models/MIT/ast-finetuned-audioset-10-10-0.4593"
LYRICS_API_URL = "https://api-inference.huggingface.co/models/gpt2-xl"
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN')}"}

def get_audio_duration(audio_path):
    """Get the duration of the audio file in seconds"""
    try:
        duration = librosa.get_duration(path=audio_path)
        return duration
    except Exception as e:
        print(f"Error getting audio duration: {e}")
        return None

def calculate_song_structure(duration):
    """Calculate song structure based on audio duration"""
    if duration is None:
        return {"verses": 2, "choruses": 1, "tokens": 200}  # Default structure
        
    # Basic rules for song structure:
    # - Short clips (< 30s): 1 verse, 1 chorus
    # - Medium clips (30s-2min): 2 verses, 1-2 choruses
    # - Longer clips (>2min): 3 verses, 2-3 choruses
    
    if duration < 30:
        return {
            "verses": 1,
            "choruses": 1,
            "tokens": 150
        }
    elif duration < 120:
        return {
            "verses": 2,
            "choruses": 2,
            "tokens": 200
        }
    else:
        return {
            "verses": 3,
            "choruses": 3,
            "tokens": 300
        }

def create_lyrics_prompt(classification_results, song_structure):
    """Create a prompt for lyrics generation based on classification results and desired structure"""
    # Get the top genre and its characteristics
    top_result = classification_results[0]
    genre = top_result['label']
    confidence = float(top_result['score'].strip('%')) / 100
    
    # Get additional musical elements
    additional_elements = [r['label'] for r in classification_results[1:3]]
    
    # Create a structured prompt based on song length
    prompt = f"""Write song lyrics in the style of {genre}.
Theme: A {genre} song with elements of {' and '.join(additional_elements)}
Structure: {song_structure['verses']} verses and {song_structure['choruses']} choruses

Format the lyrics with [Verse 1], [Chorus], [Verse 2], etc.
Make each verse 4-6 lines and chorus 4 lines.

[Verse 1]"""
    return prompt

def format_lyrics(generated_text, song_structure):
    """Format the generated lyrics according to desired structure"""
    lines = generated_text.split('\n')
    cleaned_lines = []
    current_section = "[Verse 1]"
    verse_count = 0
    chorus_count = 0
    
    for line in lines:
        line = line.strip()
        if not line or line.startswith('###') or line.startswith('```'):
            continue
            
        # Handle section markers
        if line.lower().startswith('[verse'):
            if verse_count < song_structure['verses']:
                verse_count += 1
                current_section = f"[Verse {verse_count}]"
                cleaned_lines.append(f"\n{current_section}")
                continue
        elif line.lower().startswith('[chorus'):
            if chorus_count < song_structure['choruses']:
                chorus_count += 1
                current_section = f"[Chorus {chorus_count}]"
                cleaned_lines.append(f"\n{current_section}")
                continue
        
        # Add the line if we haven't exceeded our structure limits
        if (current_section.startswith('[Verse') and verse_count <= song_structure['verses']) or \
           (current_section.startswith('[Chorus') and chorus_count <= song_structure['choruses']):
            cleaned_lines.append(line)
        
        # Add chorus after first verse if not present
        if len(cleaned_lines) == 5 and chorus_count == 0:  # After 4 lines of verse + section header
            chorus_count += 1
            cleaned_lines.append(f"\n[Chorus 1]")
    
    return "\n".join(cleaned_lines)

def generate_lyrics_with_retry(prompt, song_structure, max_retries=5, initial_wait=2):
    """Generate lyrics using GPT2-XL with retry logic"""
    wait_time = initial_wait
    
    for attempt in range(max_retries):
        try:
            response = requests.post(
                LYRICS_API_URL,
                headers=headers,
                json={
                    "inputs": prompt,
                    "parameters": {
                        "max_new_tokens": song_structure['tokens'],
                        "temperature": 0.9,
                        "top_p": 0.95,
                        "do_sample": True,
                        "return_full_text": False,
                        "stop": ["[End]", "\n\n\n"]
                    }
                }
            )
            
            print(f"Response status: {response.status_code}")
            print(f"Response content: {response.content.decode('utf-8', errors='ignore')}")
            
            if response.status_code == 200:
                result = response.json()
                if isinstance(result, list) and len(result) > 0:
                    generated_text = result[0].get("generated_text", "")
                    return format_lyrics(generated_text, song_structure)
                return "Error: No text generated"
            elif response.status_code == 503:
                print(f"Model loading, attempt {attempt + 1}/{max_retries}. Waiting {wait_time} seconds...")
                time.sleep(wait_time)
                wait_time *= 1.5  # Increase wait time for next attempt
                continue
            else:
                return f"Error generating lyrics: {response.text}"
                
        except Exception as e:
            if attempt == max_retries - 1:  # Last attempt
                return f"Error after {max_retries} attempts: {str(e)}"
            time.sleep(wait_time)
            wait_time *= 1.5
    
    return "Failed to generate lyrics after multiple attempts. Please try again."

def format_results(classification_results, lyrics, prompt):
    """Format the results for display"""
    # Format classification results
    classification_text = "Classification Results:\n"
    for i, result in enumerate(classification_results):
        classification_text += f"{i+1}. {result['label']}: {result['score']}\n"
    
    # Format final output
    output = f"""
{classification_text}
\n---Generated Lyrics---\n
{lyrics}
"""
    return output

def classify_and_generate(audio_file):
    """
    Classify the audio and generate matching lyrics
    """
    if audio_file is None:
        return "Please upload an audio file."
    
    try:
        token = os.environ.get('HF_TOKEN')
        if not token:
            return "Error: HF_TOKEN environment variable is not set. Please set your Hugging Face API token."
        
        # Get audio duration and calculate structure
        if isinstance(audio_file, tuple):
            audio_path = audio_file[0]
        else:
            audio_path = audio_file
            
        duration = get_audio_duration(audio_path)
        song_structure = calculate_song_structure(duration)
        print(f"Audio duration: {duration:.2f}s, Structure: {song_structure}")
        
        # Create a temporary file to handle the audio data
        with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_audio:
            # Copy the audio file to our temporary file
            shutil.copy2(audio_path, temp_audio.name)
            
            # Read the temporary file
            with open(temp_audio.name, "rb") as f:
                data = f.read()
        
        print("Sending request to Audio Classification API...")
        response = requests.post(AUDIO_API_URL, headers=headers, data=data)
        
        # Clean up the temporary file
        try:
            os.unlink(temp_audio.name)
        except:
            pass
        
        if response.status_code == 200:
            classification_results = response.json()
            # Format classification results
            formatted_results = []
            for result in classification_results:
                formatted_results.append({
                    'label': result['label'],
                    'score': f"{result['score']*100:.2f}%"
                })
            
            # Generate lyrics based on classification with retry logic
            print("Generating lyrics based on classification...")
            prompt = create_lyrics_prompt(formatted_results, song_structure)
            lyrics = generate_lyrics_with_retry(prompt, song_structure)
            
            # Format and return results
            return format_results(formatted_results, lyrics, prompt)
            
        elif response.status_code == 401:
            return "Error: Invalid or missing API token. Please check your Hugging Face API token."
        elif response.status_code == 503:
            return "Error: Model is loading. Please try again in a few seconds."
        else:
            return f"Error: API returned status code {response.status_code}\nResponse: {response.text}"
            
    except Exception as e:
        import traceback
        error_details = traceback.format_exc()
        return f"Error processing request: {str(e)}\nDetails:\n{error_details}"

# Create Gradio interface
iface = gr.Interface(
    fn=classify_and_generate,
    inputs=gr.Audio(type="filepath", label="Upload Audio File"),
    outputs=gr.Textbox(
        label="Results",
        lines=15,
        placeholder="Upload an audio file to see classification results and generated lyrics..."
    ),
    title="Music Genre Classifier + Lyric Generator",
    description="Upload an audio file to classify its genre and generate matching lyrics using AI.",
    examples=[],
)

# Launch the interface
if __name__ == "__main__":
    iface.launch(server_name="0.0.0.0", server_port=7860)