Spaces:
Running
Running
File size: 10,078 Bytes
b63d954 64a8c4a 3b06717 5b86980 b8ff20e c9ff2a7 c31b527 0444752 3b06717 b63d954 0444752 3bc2967 b63d954 c31b527 5b86980 c31b527 0444752 6dfd6d2 0444752 c31b527 3bc2967 c31b527 6dfd6d2 3bc2967 0444752 c31b527 3bc2967 b8ff20e 6dfd6d2 b8ff20e c31b527 3bc2967 b5cc6a6 6dfd6d2 b8ff20e 0444752 b8ff20e b5cc6a6 b8ff20e b5cc6a6 6dfd6d2 c31b527 6dfd6d2 b8ff20e 0444752 b63d954 0444752 b63d954 5b86980 0444752 5b86980 c31b527 c9ff2a7 5b86980 0444752 5b86980 c9ff2a7 3b06717 0444752 5b86980 0444752 5b86980 0444752 b8ff20e 0444752 c31b527 0444752 5b86980 0444752 5b86980 0444752 3b06717 0444752 3b06717 b63d954 5b86980 0444752 b63d954 0444752 b63d954 0444752 b63d954 3b06717 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import requests
import gradio as gr
import os
import torch
import json
import time
import tempfile
import shutil
import librosa
from transformers import AutoTokenizer, AutoModelForCausalLM
# Check if CUDA is available and set the device accordingly
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# API URLs and headers
AUDIO_API_URL = "https://api-inference.huggingface.co/models/MIT/ast-finetuned-audioset-10-10-0.4593"
LYRICS_API_URL = "https://api-inference.huggingface.co/models/gpt2-xl"
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN')}"}
def get_audio_duration(audio_path):
"""Get the duration of the audio file in seconds"""
try:
duration = librosa.get_duration(path=audio_path)
return duration
except Exception as e:
print(f"Error getting audio duration: {e}")
return None
def calculate_song_structure(duration):
"""Calculate song structure based on audio duration"""
if duration is None:
return {"verses": 2, "choruses": 1, "tokens": 200} # Default structure
# Basic rules for song structure:
# - Short clips (< 30s): 1 verse, 1 chorus
# - Medium clips (30s-2min): 2 verses, 1-2 choruses
# - Longer clips (>2min): 3 verses, 2-3 choruses
if duration < 30:
return {
"verses": 1,
"choruses": 1,
"tokens": 150
}
elif duration < 120:
return {
"verses": 2,
"choruses": 2,
"tokens": 200
}
else:
return {
"verses": 3,
"choruses": 3,
"tokens": 300
}
def create_lyrics_prompt(classification_results, song_structure):
"""Create a prompt for lyrics generation based on classification results and desired structure"""
# Get the top genre and its characteristics
top_result = classification_results[0]
genre = top_result['label']
confidence = float(top_result['score'].strip('%')) / 100
# Get additional musical elements
additional_elements = [r['label'] for r in classification_results[1:3]]
# Create a structured prompt based on song length
prompt = f"""Write song lyrics in the style of {genre}.
Theme: A {genre} song with elements of {' and '.join(additional_elements)}
Structure: {song_structure['verses']} verses and {song_structure['choruses']} choruses
Format the lyrics with [Verse 1], [Chorus], [Verse 2], etc.
Make each verse 4-6 lines and chorus 4 lines.
[Verse 1]"""
return prompt
def format_lyrics(generated_text, song_structure):
"""Format the generated lyrics according to desired structure"""
lines = generated_text.split('\n')
cleaned_lines = []
current_section = "[Verse 1]"
verse_count = 0
chorus_count = 0
for line in lines:
line = line.strip()
if not line or line.startswith('###') or line.startswith('```'):
continue
# Handle section markers
if line.lower().startswith('[verse'):
if verse_count < song_structure['verses']:
verse_count += 1
current_section = f"[Verse {verse_count}]"
cleaned_lines.append(f"\n{current_section}")
continue
elif line.lower().startswith('[chorus'):
if chorus_count < song_structure['choruses']:
chorus_count += 1
current_section = f"[Chorus {chorus_count}]"
cleaned_lines.append(f"\n{current_section}")
continue
# Add the line if we haven't exceeded our structure limits
if (current_section.startswith('[Verse') and verse_count <= song_structure['verses']) or \
(current_section.startswith('[Chorus') and chorus_count <= song_structure['choruses']):
cleaned_lines.append(line)
# Add chorus after first verse if not present
if len(cleaned_lines) == 5 and chorus_count == 0: # After 4 lines of verse + section header
chorus_count += 1
cleaned_lines.append(f"\n[Chorus 1]")
return "\n".join(cleaned_lines)
def generate_lyrics_with_retry(prompt, song_structure, max_retries=5, initial_wait=2):
"""Generate lyrics using GPT2-XL with retry logic"""
wait_time = initial_wait
for attempt in range(max_retries):
try:
response = requests.post(
LYRICS_API_URL,
headers=headers,
json={
"inputs": prompt,
"parameters": {
"max_new_tokens": song_structure['tokens'],
"temperature": 0.9,
"top_p": 0.95,
"do_sample": True,
"return_full_text": False,
"stop": ["[End]", "\n\n\n"]
}
}
)
print(f"Response status: {response.status_code}")
print(f"Response content: {response.content.decode('utf-8', errors='ignore')}")
if response.status_code == 200:
result = response.json()
if isinstance(result, list) and len(result) > 0:
generated_text = result[0].get("generated_text", "")
return format_lyrics(generated_text, song_structure)
return "Error: No text generated"
elif response.status_code == 503:
print(f"Model loading, attempt {attempt + 1}/{max_retries}. Waiting {wait_time} seconds...")
time.sleep(wait_time)
wait_time *= 1.5 # Increase wait time for next attempt
continue
else:
return f"Error generating lyrics: {response.text}"
except Exception as e:
if attempt == max_retries - 1: # Last attempt
return f"Error after {max_retries} attempts: {str(e)}"
time.sleep(wait_time)
wait_time *= 1.5
return "Failed to generate lyrics after multiple attempts. Please try again."
def format_results(classification_results, lyrics, prompt):
"""Format the results for display"""
# Format classification results
classification_text = "Classification Results:\n"
for i, result in enumerate(classification_results):
classification_text += f"{i+1}. {result['label']}: {result['score']}\n"
# Format final output
output = f"""
{classification_text}
\n---Generated Lyrics---\n
{lyrics}
"""
return output
def classify_and_generate(audio_file):
"""
Classify the audio and generate matching lyrics
"""
if audio_file is None:
return "Please upload an audio file."
try:
token = os.environ.get('HF_TOKEN')
if not token:
return "Error: HF_TOKEN environment variable is not set. Please set your Hugging Face API token."
# Get audio duration and calculate structure
if isinstance(audio_file, tuple):
audio_path = audio_file[0]
else:
audio_path = audio_file
duration = get_audio_duration(audio_path)
song_structure = calculate_song_structure(duration)
print(f"Audio duration: {duration:.2f}s, Structure: {song_structure}")
# Create a temporary file to handle the audio data
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_audio:
# Copy the audio file to our temporary file
shutil.copy2(audio_path, temp_audio.name)
# Read the temporary file
with open(temp_audio.name, "rb") as f:
data = f.read()
print("Sending request to Audio Classification API...")
response = requests.post(AUDIO_API_URL, headers=headers, data=data)
# Clean up the temporary file
try:
os.unlink(temp_audio.name)
except:
pass
if response.status_code == 200:
classification_results = response.json()
# Format classification results
formatted_results = []
for result in classification_results:
formatted_results.append({
'label': result['label'],
'score': f"{result['score']*100:.2f}%"
})
# Generate lyrics based on classification with retry logic
print("Generating lyrics based on classification...")
prompt = create_lyrics_prompt(formatted_results, song_structure)
lyrics = generate_lyrics_with_retry(prompt, song_structure)
# Format and return results
return format_results(formatted_results, lyrics, prompt)
elif response.status_code == 401:
return "Error: Invalid or missing API token. Please check your Hugging Face API token."
elif response.status_code == 503:
return "Error: Model is loading. Please try again in a few seconds."
else:
return f"Error: API returned status code {response.status_code}\nResponse: {response.text}"
except Exception as e:
import traceback
error_details = traceback.format_exc()
return f"Error processing request: {str(e)}\nDetails:\n{error_details}"
# Create Gradio interface
iface = gr.Interface(
fn=classify_and_generate,
inputs=gr.Audio(type="filepath", label="Upload Audio File"),
outputs=gr.Textbox(
label="Results",
lines=15,
placeholder="Upload an audio file to see classification results and generated lyrics..."
),
title="Music Genre Classifier + Lyric Generator",
description="Upload an audio file to classify its genre and generate matching lyrics using AI.",
examples=[],
)
# Launch the interface
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860) |