fyp_start_space / app.py
jacob-c's picture
.
7355122
raw
history blame
11.7 kB
import requests
import gradio as gr
import os
import torch
import json
import time
import tempfile
import shutil
import librosa
from transformers import AutoTokenizer, AutoModelForCausalLM
# Check if CUDA is available and set the device accordingly
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# API URLs and headers
AUDIO_API_URL = "https://api-inference.huggingface.co/models/MIT/ast-finetuned-audioset-10-10-0.4593"
LYRICS_API_URL = "https://api-inference.huggingface.co/models/gpt2-medium"
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN')}"}
def get_audio_duration(audio_path):
"""Get the duration of the audio file in seconds"""
try:
duration = librosa.get_duration(path=audio_path)
return duration
except Exception as e:
print(f"Error getting audio duration: {e}")
return None
def calculate_song_structure(duration):
"""Calculate song structure based on audio duration"""
if duration is None:
return {"verses": 2, "choruses": 1, "tokens": 200} # Default structure
# Basic rules for song structure:
# - Short clips (< 30s): 1 verse, 1 chorus
# - Medium clips (30s-2min): 2 verses, 1-2 choruses
# - Longer clips (>2min): 3 verses, 2-3 choruses
if duration < 30:
return {
"verses": 1,
"choruses": 1,
"tokens": 150
}
elif duration < 120:
return {
"verses": 2,
"choruses": 2,
"tokens": 200
}
else:
return {
"verses": 3,
"choruses": 3,
"tokens": 300
}
def create_lyrics_prompt(classification_results, song_structure):
"""Create a prompt for lyrics generation based on classification results and desired structure"""
# Get the top genres and characteristics
main_style = classification_results[0]['label']
main_confidence = float(classification_results[0]['score'].strip('%'))
secondary_elements = [result['label'] for result in classification_results[1:3]]
# Create a simpler prompt with example structure
prompt = f"""Here's a {main_style} song with {', '.join(secondary_elements)} elements:
[Verse 1]
The melody rings through the air tonight
Like a gentle whisper in the light
Every note tells a story so clear
Creating magic for all to hear
[Chorus]
Let the rhythm flow and shine
Feel the music so divine
Every moment, every sound
Brings the joy that we have found
Now continue with your own lyrics in this style:
[Verse 1]"""
return prompt
def format_lyrics(generated_text, song_structure):
"""Format the generated lyrics according to desired structure"""
lines = []
current_section = None
verse_count = 0
chorus_count = 0
section_lines = []
# Process the generated text line by line
for line in generated_text.split('\n'):
line = line.strip()
# Skip empty lines and code blocks
if not line or line.startswith('```') or line.startswith('###'):
continue
# Handle section markers
if '[verse' in line.lower() or '[chorus' in line.lower():
# Save previous section if exists
if section_lines:
while len(section_lines) < 4: # Ensure 4 lines per section
section_lines.append("...")
lines.extend(section_lines[:4]) # Only take first 4 lines if more
section_lines = []
# Add appropriate section marker
if '[verse' in line.lower() and verse_count < song_structure['verses']:
verse_count += 1
lines.append(f"\n[Verse {verse_count}]")
current_section = 'verse'
elif '[chorus' in line.lower() and chorus_count < song_structure['choruses']:
chorus_count += 1
lines.append(f"\n[Chorus {chorus_count}]")
current_section = 'chorus'
else:
# Add line to current section
section_lines.append(line)
# Handle the last section
if section_lines:
while len(section_lines) < 4:
section_lines.append("...")
lines.extend(section_lines[:4])
# If we don't have enough sections, add them
while verse_count < song_structure['verses'] or chorus_count < song_structure['choruses']:
if verse_count < song_structure['verses']:
verse_count += 1
lines.append(f"\n[Verse {verse_count}]")
lines.extend(["..." for _ in range(4)])
if chorus_count < song_structure['choruses']:
chorus_count += 1
lines.append(f"\n[Chorus {chorus_count}]")
lines.extend(["..." for _ in range(4)])
return "\n".join(lines)
def generate_lyrics_with_retry(prompt, song_structure, max_retries=5, initial_wait=2):
"""Generate lyrics using GPT2-Medium with retry logic"""
wait_time = initial_wait
for attempt in range(max_retries):
try:
response = requests.post(
LYRICS_API_URL,
headers=headers,
json={
"inputs": prompt,
"parameters": {
"max_new_tokens": song_structure['tokens'],
"temperature": 0.7, # Lower temperature for more focused output
"top_p": 0.85,
"do_sample": True,
"return_full_text": False,
"repetition_penalty": 1.1, # Reduced repetition penalty
"presence_penalty": 0.3,
"frequency_penalty": 0.3
}
}
)
if response.status_code == 200:
result = response.json()
if isinstance(result, list) and len(result) > 0:
generated_text = result[0].get("generated_text", "")
if not generated_text:
continue
formatted_lyrics = format_lyrics(generated_text, song_structure)
# Verify we have actual content and it looks like lyrics
content_lines = [l for l in formatted_lyrics.split('\n')
if l.strip() and not l.strip().startswith('[') and l.strip() != '...']
# More lenient line length check
if len(content_lines) < 4 or any(len(line.split()) > 20 for line in content_lines):
if attempt < max_retries - 1:
print("Generated text doesn't look like lyrics, retrying...")
continue
return formatted_lyrics
elif response.status_code == 503:
print(f"Model loading, attempt {attempt + 1}/{max_retries}. Waiting {wait_time} seconds...")
time.sleep(wait_time)
wait_time *= 1.5
continue
else:
print(f"Error response: {response.text}")
if attempt < max_retries - 1:
continue
return f"Error generating lyrics: {response.text}"
except Exception as e:
print(f"Error on attempt {attempt + 1}: {str(e)}")
if attempt < max_retries - 1:
time.sleep(wait_time)
wait_time *= 1.5
continue
return f"Error after {max_retries} attempts: {str(e)}"
return "Failed to generate lyrics after multiple attempts. Please try again."
def format_results(classification_results, lyrics, prompt):
"""Format the results for display"""
# Format classification results
classification_text = "Classification Results:\n"
for i, result in enumerate(classification_results):
classification_text += f"{i+1}. {result['label']}: {result['score']}\n"
# Format final output
output = f"""
{classification_text}
\n---Generated Lyrics---\n
{lyrics}
"""
return output
def classify_and_generate(audio_file):
"""
Classify the audio and generate matching lyrics
"""
if audio_file is None:
return "Please upload an audio file."
try:
token = os.environ.get('HF_TOKEN')
if not token:
return "Error: HF_TOKEN environment variable is not set. Please set your Hugging Face API token."
# Get audio duration and calculate structure
if isinstance(audio_file, tuple):
audio_path = audio_file[0]
else:
audio_path = audio_file
duration = get_audio_duration(audio_path)
song_structure = calculate_song_structure(duration)
print(f"Audio duration: {duration:.2f}s, Structure: {song_structure}")
# Create a temporary file to handle the audio data
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_audio:
# Copy the audio file to our temporary file
shutil.copy2(audio_path, temp_audio.name)
# Read the temporary file
with open(temp_audio.name, "rb") as f:
data = f.read()
print("Sending request to Audio Classification API...")
response = requests.post(AUDIO_API_URL, headers=headers, data=data)
# Clean up the temporary file
try:
os.unlink(temp_audio.name)
except:
pass
if response.status_code == 200:
classification_results = response.json()
# Format classification results
formatted_results = []
for result in classification_results:
formatted_results.append({
'label': result['label'],
'score': f"{result['score']*100:.2f}%"
})
# Generate lyrics based on classification with retry logic
print("Generating lyrics based on classification...")
prompt = create_lyrics_prompt(formatted_results, song_structure)
lyrics = generate_lyrics_with_retry(prompt, song_structure)
# Format and return results
return format_results(formatted_results, lyrics, prompt)
elif response.status_code == 401:
return "Error: Invalid or missing API token. Please check your Hugging Face API token."
elif response.status_code == 503:
return "Error: Model is loading. Please try again in a few seconds."
else:
return f"Error: API returned status code {response.status_code}\nResponse: {response.text}"
except Exception as e:
import traceback
error_details = traceback.format_exc()
return f"Error processing request: {str(e)}\nDetails:\n{error_details}"
# Create Gradio interface
iface = gr.Interface(
fn=classify_and_generate,
inputs=gr.Audio(type="filepath", label="Upload Audio File"),
outputs=gr.Textbox(
label="Results",
lines=15,
placeholder="Upload an audio file to see classification results and generated lyrics..."
),
title="Music Genre Classifier + Lyric Generator",
description="Upload an audio file to classify its genre and generate matching lyrics using AI.",
examples=[],
)
# Launch the interface
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860)