fyp_start_space / app.py
jacob-c's picture
.
b8ff20e
raw
history blame
6.02 kB
import requests
import gradio as gr
import os
import torch
import json
import time
from transformers import AutoTokenizer, AutoModelForCausalLM
# Check if CUDA is available and set the device accordingly
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# API URLs and headers
AUDIO_API_URL = "https://api-inference.huggingface.co/models/MIT/ast-finetuned-audioset-10-10-0.4593"
JANUS_API_URL = "https://api-inference.huggingface.co/models/deepseek-ai/Janus-1.3B"
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN')}"}
def format_error(message):
"""Helper function to format error messages as JSON"""
return {"error": message}
def create_lyrics_prompt(classification_results):
"""Create a prompt for lyrics generation based on classification results"""
# Get the top genre and its characteristics
top_result = classification_results[0]
genre = top_result['label']
confidence = float(top_result['score'].strip('%')) / 100
# Create a detailed prompt
prompt = f"""Write song lyrics in the style of {genre} music. The song should capture the essence of this genre.
Additional musical elements detected: {', '.join(r['label'] for r in classification_results[1:3])}
Please write creative and original lyrics that:
1. Match the {genre} style
2. Have a clear structure (verse, chorus)
3. Reflect the mood and themes common in this genre
Generate the lyrics:
"""
return prompt
def generate_lyrics_with_retry(prompt, max_retries=5, initial_wait=2):
"""Generate lyrics using the Janus model with retry logic"""
wait_time = initial_wait
for attempt in range(max_retries):
try:
response = requests.post(
JANUS_API_URL,
headers=headers,
json={
"inputs": prompt,
"parameters": {
"max_new_tokens": 200,
"temperature": 0.7,
"top_p": 0.9,
"return_full_text": False
}
}
)
if response.status_code == 200:
return response.json()[0]["generated_text"]
elif response.status_code == 503:
print(f"Model loading, attempt {attempt + 1}/{max_retries}. Waiting {wait_time} seconds...")
time.sleep(wait_time)
wait_time *= 1.5 # Increase wait time for next attempt
continue
else:
return f"Error generating lyrics: {response.text}"
except Exception as e:
if attempt == max_retries - 1: # Last attempt
return f"Error after {max_retries} attempts: {str(e)}"
time.sleep(wait_time)
wait_time *= 1.5
return "Failed to generate lyrics after multiple attempts. Please try again."
def format_results(classification_results, lyrics, prompt):
"""Format the results for display"""
# Format classification results
classification_text = "Classification Results:\n"
for i, result in enumerate(classification_results):
classification_text += f"{i+1}. {result['label']}: {result['score']}\n"
# Format final output
output = f"""
{classification_text}
\n---Generated Lyrics---\n
{lyrics}
"""
return output
def classify_and_generate(audio_file):
"""
Classify the audio and generate matching lyrics
"""
if audio_file is None:
return "Please upload an audio file."
try:
token = os.environ.get('HF_TOKEN')
if not token:
return "Error: HF_TOKEN environment variable is not set. Please set your Hugging Face API token."
# First, classify the audio
with open(audio_file, "rb") as f:
data = f.read()
print("Sending request to Audio Classification API...")
response = requests.post(AUDIO_API_URL, headers=headers, data=data)
if response.status_code == 200:
classification_results = response.json()
# Format classification results
formatted_results = []
for result in classification_results:
formatted_results.append({
'label': result['label'],
'score': f"{result['score']*100:.2f}%"
})
# Generate lyrics based on classification with retry logic
print("Generating lyrics based on classification...")
prompt = create_lyrics_prompt(formatted_results)
lyrics = generate_lyrics_with_retry(prompt)
# Format and return results
return format_results(formatted_results, lyrics, prompt)
elif response.status_code == 401:
return "Error: Invalid or missing API token. Please check your Hugging Face API token."
elif response.status_code == 503:
return "Error: Model is loading. Please try again in a few seconds."
else:
return f"Error: API returned status code {response.status_code}\nResponse: {response.text}"
except Exception as e:
import traceback
error_details = traceback.format_exc()
return f"Error processing request: {str(e)}\nDetails:\n{error_details}"
# Create Gradio interface
iface = gr.Interface(
fn=classify_and_generate,
inputs=gr.Audio(type="filepath", label="Upload Audio File"),
outputs=gr.Textbox(
label="Results",
lines=15,
placeholder="Upload an audio file to see classification results and generated lyrics..."
),
title="Music Genre Classifier + Lyric Generator",
description="Upload an audio file to classify its genre and generate matching lyrics using AI.",
examples=[],
)
# Launch the interface
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860)