Spaces:
Running
Running
import requests | |
import gradio as gr | |
import os | |
import torch | |
import json | |
import time | |
import tempfile | |
import shutil | |
import librosa | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Check if CUDA is available and set the device accordingly | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# API URLs and headers | |
AUDIO_API_URL = "https://api-inference.huggingface.co/models/MIT/ast-finetuned-audioset-10-10-0.4593" | |
LYRICS_API_URL = "https://api-inference.huggingface.co/models/gpt2-medium" | |
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN')}"} | |
def get_audio_duration(audio_path): | |
"""Get the duration of the audio file in seconds""" | |
try: | |
duration = librosa.get_duration(path=audio_path) | |
return duration | |
except Exception as e: | |
print(f"Error getting audio duration: {e}") | |
return None | |
def calculate_song_structure(duration): | |
"""Calculate song structure based on audio duration""" | |
if duration is None: | |
return {"verses": 2, "choruses": 1, "tokens": 200} # Default structure | |
# Basic rules for song structure: | |
# - Short clips (< 30s): 1 verse, 1 chorus | |
# - Medium clips (30s-2min): 2 verses, 1-2 choruses | |
# - Longer clips (>2min): 3 verses, 2-3 choruses | |
if duration < 30: | |
return { | |
"verses": 1, | |
"choruses": 1, | |
"tokens": 150 | |
} | |
elif duration < 120: | |
return { | |
"verses": 2, | |
"choruses": 2, | |
"tokens": 200 | |
} | |
else: | |
return { | |
"verses": 3, | |
"choruses": 3, | |
"tokens": 300 | |
} | |
def create_lyrics_prompt(classification_results, song_structure): | |
"""Create a prompt for lyrics generation based on classification results and desired structure""" | |
# Get the top genres and characteristics | |
main_style = classification_results[0]['label'] | |
secondary_elements = [result['label'] for result in classification_results[1:3]] | |
# Create a more specific prompt with example structure and style guidance | |
prompt = f"""Create {song_structure['verses']} verses and {song_structure['choruses']} choruses in {main_style} style with {', '.join(secondary_elements)} elements. | |
[Verse 1]""" | |
return prompt | |
def format_lyrics(generated_text, song_structure): | |
"""Format the generated lyrics according to desired structure""" | |
lines = [] | |
verse_count = 0 | |
chorus_count = 0 | |
current_section = [] | |
# Split text into lines and process | |
text_lines = generated_text.split('\n') | |
for line in text_lines: | |
line = line.strip() | |
# Skip empty lines and metadata | |
if not line or line.startswith('```') or line.startswith('###'): | |
continue | |
# Handle section markers | |
if '[verse' in line.lower() or '[chorus' in line.lower(): | |
# Save previous section if it exists | |
if current_section: | |
# Pad section to 4 lines if needed | |
while len(current_section) < 4: | |
current_section.append("...") | |
lines.extend(current_section[:4]) | |
current_section = [] | |
# Add new section marker | |
if '[verse' in line.lower() and verse_count < song_structure['verses']: | |
verse_count += 1 | |
lines.append(f"\n[Verse {verse_count}]") | |
elif '[chorus' in line.lower() and chorus_count < song_structure['choruses']: | |
chorus_count += 1 | |
lines.append(f"\n[Chorus {chorus_count}]") | |
else: | |
# Add line to current section if it looks like lyrics | |
if len(line.split()) <= 12 and not line[0] in '.,!?': | |
current_section.append(line) | |
# Handle last section | |
if current_section: | |
while len(current_section) < 4: | |
current_section.append("...") | |
lines.extend(current_section[:4]) | |
# Add any missing sections | |
while verse_count < song_structure['verses'] or chorus_count < song_structure['choruses']: | |
if verse_count < song_structure['verses']: | |
verse_count += 1 | |
lines.append(f"\n[Verse {verse_count}]") | |
lines.extend(["..." for _ in range(4)]) | |
if chorus_count < song_structure['choruses']: | |
chorus_count += 1 | |
lines.append(f"\n[Chorus {chorus_count}]") | |
lines.extend(["..." for _ in range(4)]) | |
return "\n".join(lines) | |
def create_default_lyrics(song_structure): | |
"""Create default lyrics when generation fails""" | |
lyrics = [] | |
# Add verses | |
for i in range(song_structure['verses']): | |
lyrics.append(f"\n[Verse {i+1}]") | |
lyrics.extend([ | |
]) | |
# Add choruses | |
for i in range(song_structure['choruses']): | |
lyrics.append(f"\n[Chorus {i+1}]") | |
lyrics.extend([ | |
]) | |
return "\n".join(lyrics) | |
def generate_lyrics_with_retry(prompt, song_structure, max_retries=5, initial_wait=2): | |
"""Generate lyrics using GPT2 with improved retry logic and error handling""" | |
wait_time = initial_wait | |
for attempt in range(max_retries): | |
try: | |
print(f"\nAttempt {attempt + 1}: Generating lyrics...") | |
response = requests.post( | |
LYRICS_API_URL, | |
headers=headers, | |
json={ | |
"inputs": prompt, | |
"parameters": { | |
"max_new_tokens": song_structure['tokens'], | |
"temperature": 0.8, | |
"top_p": 0.9, | |
"do_sample": True, | |
"return_full_text": True, | |
"num_return_sequences": 1, | |
"repetition_penalty": 1.1 | |
} | |
} | |
) | |
if response.status_code == 200: | |
result = response.json() | |
# Handle different response formats | |
if isinstance(result, list): | |
generated_text = result[0].get('generated_text', '') | |
elif isinstance(result, dict): | |
generated_text = result.get('generated_text', '') | |
else: | |
generated_text = str(result) | |
if not generated_text: | |
print("Empty response received, retrying...") | |
time.sleep(wait_time) | |
continue | |
# Process the generated text into verses and chorus | |
formatted_lyrics = format_lyrics(generated_text, song_structure) | |
# Verify we have enough content | |
if formatted_lyrics.count('[Verse') >= song_structure['verses'] and \ | |
formatted_lyrics.count('[Chorus') >= song_structure['choruses']: | |
return formatted_lyrics | |
else: | |
print("Not enough sections generated, retrying...") | |
elif response.status_code == 503: | |
print(f"Model loading, waiting {wait_time} seconds...") | |
time.sleep(wait_time) | |
wait_time *= 1.5 | |
continue | |
else: | |
print(f"Error response: {response.text}") | |
if attempt < max_retries - 1: | |
time.sleep(wait_time) | |
continue | |
except Exception as e: | |
print(f"Exception during generation: {str(e)}") | |
if attempt < max_retries - 1: | |
time.sleep(wait_time) | |
wait_time *= 1.5 | |
continue | |
time.sleep(wait_time) | |
wait_time = min(wait_time * 1.5, 10) # Cap maximum wait time at 10 seconds | |
# If we failed to generate after all retries, return a default structure | |
return create_default_lyrics(song_structure) | |
def format_results(classification_results, lyrics, prompt): | |
"""Format the results for display""" | |
# Format classification results | |
classification_text = "Classification Results:\n" | |
for i, result in enumerate(classification_results): | |
classification_text += f"{i+1}. {result['label']}: {result['score']}\n" | |
# Format final output | |
output = f""" | |
{classification_text} | |
\n---Generated Lyrics---\n | |
{lyrics} | |
""" | |
return output | |
def classify_with_retry(data, max_retries=5, initial_wait=2): | |
"""Classify audio with retry logic for 503 errors""" | |
wait_time = initial_wait | |
for attempt in range(max_retries): | |
try: | |
print(f"\nAttempt {attempt + 1}: Classifying audio...") | |
response = requests.post(AUDIO_API_URL, headers=headers, data=data) | |
if response.status_code == 200: | |
return response.json() | |
elif response.status_code == 503: | |
print(f"Model loading, waiting {wait_time} seconds...") | |
time.sleep(wait_time) | |
wait_time *= 1.5 | |
continue | |
else: | |
print(f"Error response: {response.text}") | |
if attempt < max_retries - 1: | |
time.sleep(wait_time) | |
continue | |
return None | |
except Exception as e: | |
print(f"Exception during classification: {str(e)}") | |
if attempt < max_retries - 1: | |
time.sleep(wait_time) | |
wait_time *= 1.5 | |
continue | |
return None | |
time.sleep(wait_time) | |
wait_time = min(wait_time * 1.5, 10) | |
return None | |
def classify_and_generate(audio_file): | |
""" | |
Classify the audio and generate matching lyrics | |
""" | |
if audio_file is None: | |
return "Please upload an audio file." | |
try: | |
token = os.environ.get('HF_TOKEN') | |
if not token: | |
return "Error: HF_TOKEN environment variable is not set. Please set your Hugging Face API token." | |
# Get audio duration and calculate structure | |
if isinstance(audio_file, tuple): | |
audio_path = audio_file[0] | |
else: | |
audio_path = audio_file | |
duration = get_audio_duration(audio_path) | |
song_structure = calculate_song_structure(duration) | |
print(f"Audio duration: {duration:.2f}s, Structure: {song_structure}") | |
# Create a temporary file to handle the audio data | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_audio: | |
# Copy the audio file to our temporary file | |
shutil.copy2(audio_path, temp_audio.name) | |
# Read the temporary file | |
with open(temp_audio.name, "rb") as f: | |
data = f.read() | |
print("Sending request to Audio Classification API...") | |
classification_results = classify_with_retry(data) | |
# Clean up the temporary file | |
try: | |
os.unlink(temp_audio.name) | |
except: | |
pass | |
if classification_results is None: | |
return "Error: Failed to classify audio after multiple retries. Please try again." | |
# Format classification results | |
formatted_results = [] | |
for result in classification_results: | |
formatted_results.append({ | |
'label': result['label'], | |
'score': f"{result['score']*100:.2f}%" | |
}) | |
# Generate lyrics based on classification with retry logic | |
print("Generating lyrics based on classification...") | |
prompt = create_lyrics_prompt(formatted_results, song_structure) | |
lyrics = generate_lyrics_with_retry(prompt, song_structure) | |
# Format and return results | |
return format_results(formatted_results, lyrics, prompt) | |
except Exception as e: | |
import traceback | |
error_details = traceback.format_exc() | |
return f"Error processing request: {str(e)}\nDetails:\n{error_details}" | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=classify_and_generate, | |
inputs=gr.Audio(type="filepath", label="Upload Audio File"), | |
outputs=gr.Textbox( | |
label="Results", | |
lines=15, | |
placeholder="Upload an audio file to see classification results and generated lyrics..." | |
), | |
title="Music Genre Classifier + Lyric Generator", | |
description="Upload an audio file to classify its genre and generate matching lyrics using AI.", | |
examples=[], | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
iface.launch(server_name="0.0.0.0", server_port=7860) |