import requests import gradio as gr import os import torch import json import time from transformers import AutoTokenizer, AutoModelForCausalLM # Check if CUDA is available and set the device accordingly device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # API URLs and headers AUDIO_API_URL = "https://api-inference.huggingface.co/models/MIT/ast-finetuned-audioset-10-10-0.4593" LYRICS_API_URL = "https://api-inference.huggingface.co/models/EleutherAI/gpt-j-6B" headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN')}"} def format_error(message): """Helper function to format error messages as JSON""" return {"error": message} def create_lyrics_prompt(classification_results): """Create a prompt for lyrics generation based on classification results""" # Get the top genre and its characteristics top_result = classification_results[0] genre = top_result['label'] confidence = float(top_result['score'].strip('%')) / 100 # Get additional musical elements additional_elements = [r['label'] for r in classification_results[1:3]] # Create a detailed creative prompt prompt = f"""Write creative and original song lyrics that capture the following musical elements: Primary Style: {genre} ({confidence*100:.1f}% confidence) Secondary Elements: {', '.join(additional_elements)} Requirements: 1. Create lyrics that strongly reflect the {genre} style 2. Incorporate elements of {' and '.join(additional_elements)} 3. Include both verses and a chorus 4. Match the mood and atmosphere typical of this genre 5. Use appropriate musical terminology and style Lyrics: [Verse 1] """ return prompt def generate_lyrics_with_retry(prompt, max_retries=5, initial_wait=2): """Generate lyrics using GPT-J-6B with retry logic""" wait_time = initial_wait for attempt in range(max_retries): try: response = requests.post( LYRICS_API_URL, headers=headers, json={ "inputs": prompt, "parameters": { "max_new_tokens": 250, "temperature": 0.8, "top_p": 0.92, "do_sample": True, "return_full_text": False, "stop": ["[End]", "\n\n\n"] } } ) print(f"Response status: {response.status_code}") print(f"Response content: {response.content.decode('utf-8', errors='ignore')}") if response.status_code == 200: result = response.json() if isinstance(result, list) and len(result) > 0: generated_text = result[0].get("generated_text", "") # Clean up and format the generated text lines = generated_text.split('\n') cleaned_lines = [] for line in lines: line = line.strip() if line and not line.startswith('###') and not line.startswith('```'): cleaned_lines.append(line) return "\n".join(cleaned_lines) return "Error: No text generated" elif response.status_code == 503: print(f"Model loading, attempt {attempt + 1}/{max_retries}. Waiting {wait_time} seconds...") time.sleep(wait_time) wait_time *= 1.5 # Increase wait time for next attempt continue else: return f"Error generating lyrics: {response.text}" except Exception as e: if attempt == max_retries - 1: # Last attempt return f"Error after {max_retries} attempts: {str(e)}" time.sleep(wait_time) wait_time *= 1.5 return "Failed to generate lyrics after multiple attempts. Please try again." def format_results(classification_results, lyrics, prompt): """Format the results for display""" # Format classification results classification_text = "Classification Results:\n" for i, result in enumerate(classification_results): classification_text += f"{i+1}. {result['label']}: {result['score']}\n" # Format final output output = f""" {classification_text} \n---Generated Lyrics---\n {lyrics} """ return output def classify_and_generate(audio_file): """ Classify the audio and generate matching lyrics """ if audio_file is None: return "Please upload an audio file." try: token = os.environ.get('HF_TOKEN') if not token: return "Error: HF_TOKEN environment variable is not set. Please set your Hugging Face API token." # First, classify the audio with open(audio_file, "rb") as f: data = f.read() print("Sending request to Audio Classification API...") response = requests.post(AUDIO_API_URL, headers=headers, data=data) if response.status_code == 200: classification_results = response.json() # Format classification results formatted_results = [] for result in classification_results: formatted_results.append({ 'label': result['label'], 'score': f"{result['score']*100:.2f}%" }) # Generate lyrics based on classification with retry logic print("Generating lyrics based on classification...") prompt = create_lyrics_prompt(formatted_results) lyrics = generate_lyrics_with_retry(prompt) # Format and return results return format_results(formatted_results, lyrics, prompt) elif response.status_code == 401: return "Error: Invalid or missing API token. Please check your Hugging Face API token." elif response.status_code == 503: return "Error: Model is loading. Please try again in a few seconds." else: return f"Error: API returned status code {response.status_code}\nResponse: {response.text}" except Exception as e: import traceback error_details = traceback.format_exc() return f"Error processing request: {str(e)}\nDetails:\n{error_details}" # Create Gradio interface iface = gr.Interface( fn=classify_and_generate, inputs=gr.Audio(type="filepath", label="Upload Audio File"), outputs=gr.Textbox( label="Results", lines=15, placeholder="Upload an audio file to see classification results and generated lyrics..." ), title="Music Genre Classifier + Lyric Generator", description="Upload an audio file to classify its genre and generate matching lyrics using AI.", examples=[], ) # Launch the interface if __name__ == "__main__": iface.launch(server_name="0.0.0.0", server_port=7860)