File size: 12,804 Bytes
547c4d0 1ff1aab a1321b3 2c4561e 1ff1aab 547c4d0 bea11aa a1321b3 bea11aa 547c4d0 bea11aa a1321b3 bea11aa a1321b3 bea11aa a1321b3 bea11aa a1321b3 bea11aa 547c4d0 1ff1aab 547c4d0 1ff1aab 547c4d0 a1321b3 547c4d0 a1321b3 547c4d0 a1321b3 547c4d0 a1321b3 547c4d0 a1321b3 547c4d0 a1321b3 547c4d0 a1321b3 bea11aa a1321b3 bea11aa a1321b3 547c4d0 a1321b3 547c4d0 a1321b3 547c4d0 a1321b3 547c4d0 a1321b3 547c4d0 a1321b3 547c4d0 a1321b3 547c4d0 a1321b3 547c4d0 a1321b3 547c4d0 a1321b3 547c4d0 1ff1aab 547c4d0 1ff1aab 547c4d0 48a9e55 bea11aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import librosa
import numpy as np
from scipy import signal
from collections import Counter
import warnings
warnings.filterwarnings('ignore') # Suppress librosa warnings
try:
import matplotlib.pyplot as plt
except ImportError:
plt = None
class MusicAnalyzer:
def __init__(self):
# Emotion coordinates (pop-optimized, more separation)
self.emotion_classes = {
'happy': {'valence': 0.96, 'arousal': 0.72},
'excited': {'valence': 0.88, 'arousal': 0.96},
'tender': {'valence': 0.70, 'arousal': 0.39},
'calm': {'valence': 0.58, 'arousal': 0.18},
'sad': {'valence': 0.18, 'arousal': 0.19},
'depressed': {'valence': 0.09, 'arousal': 0.06},
'angry': {'valence': 0.11, 'arousal': 0.80},
'fearful': {'valence': 0.13, 'arousal': 0.99}
}
# More realistic pop theme mapping
self.theme_classes = {
'love': ['happy', 'excited', 'tender'],
'triumph': ['excited', 'happy', 'angry'],
'loss': ['sad', 'depressed'],
'adventure': ['excited', 'fearful'],
'reflection': ['calm', 'tender', 'sad'],
'conflict': ['angry', 'fearful']
}
# Pop-tuned feature weights
self.feature_weights = {
'mode': 0.34,
'tempo': 0.32,
'energy': 0.16,
'brightness': 0.14,
'rhythm_complexity': 0.04
}
self.key_names = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
def load_audio(self, file_path, sr=22050, duration=None):
try:
y, sr = librosa.load(file_path, sr=sr, duration=duration)
return y, sr
except Exception as e:
print(f"Error loading audio file: {e}")
return None, None
def analyze_rhythm(self, y, sr):
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
tempo, beat_frames = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr)
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
beat_intervals = np.diff(beat_times) if len(beat_times) > 1 else np.array([0])
beat_regularity = 1.0 / np.std(beat_intervals) if len(beat_intervals) > 0 and np.std(beat_intervals) > 0 else 0
ac = librosa.autocorrelate(onset_env, max_size=sr // 2)
ac = librosa.util.normalize(ac, norm=np.inf)
rhythm_intensity = np.mean(onset_env) / np.max(onset_env) if np.max(onset_env) > 0 else 0
rhythm_complexity = np.std(onset_env) / np.mean(onset_env) if np.mean(onset_env) > 0 else 0
beat_times_list = [float(t) for t in beat_times.tolist()]
beat_intervals_list = [float(i) for i in beat_intervals.tolist()]
return {
"tempo": float(tempo),
"beat_times": beat_times_list,
"beat_intervals": beat_intervals_list,
"beat_regularity": float(beat_regularity),
"rhythm_intensity": float(rhythm_intensity),
"rhythm_complexity": float(rhythm_complexity)
}
def analyze_tonality(self, y, sr):
chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
major_profile = np.array([6.35, 2.23, 3.48, 2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66, 2.29, 2.88])
minor_profile = np.array([6.33, 2.68, 3.52, 5.38, 2.60, 3.53, 2.54, 4.75, 3.98, 2.69, 3.34, 3.17])
chroma_avg = np.mean(chroma, axis=1)
major_corr = np.zeros(12)
minor_corr = np.zeros(12)
for i in range(12):
major_corr[i] = np.corrcoef(np.roll(chroma_avg, i), major_profile)[0, 1]
minor_corr[i] = np.corrcoef(np.roll(chroma_avg, i), minor_profile)[0, 1]
max_major_idx = np.argmax(major_corr)
max_minor_idx = np.argmax(minor_corr)
if major_corr[max_major_idx] > minor_corr[max_minor_idx]:
mode = "major"
key = self.key_names[max_major_idx]
else:
mode = "minor"
key = self.key_names[max_minor_idx]
harmony_complexity = np.std(chroma) / np.mean(chroma) if np.mean(chroma) > 0 else 0
tonal_stability = 1.0 / (np.std(chroma_avg) + 0.001)
spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
brightness = np.mean(spectral_centroid) / (sr / 2)
spectral_contrast = librosa.feature.spectral_contrast(y=y, sr=sr)
dissonance = np.mean(spectral_contrast[0])
return {
"key": key,
"mode": mode,
"is_major": mode == "major",
"harmony_complexity": float(harmony_complexity),
"tonal_stability": float(tonal_stability),
"brightness": float(brightness),
"dissonance": float(dissonance)
}
def analyze_energy(self, y, sr):
rms = librosa.feature.rms(y=y)[0]
mean_energy = np.mean(rms)
energy_std = np.std(rms)
energy_dynamic_range = np.max(rms) - np.min(rms) if len(rms) > 0 else 0
spec = np.abs(librosa.stft(y))
freq_bins = spec.shape[0]
low_freq_energy = np.mean(spec[:int(freq_bins * 0.2), :])
mid_freq_energy = np.mean(spec[int(freq_bins * 0.2):int(freq_bins * 0.8), :])
high_freq_energy = np.mean(spec[int(freq_bins * 0.8):, :])
total_energy = low_freq_energy + mid_freq_energy + high_freq_energy
if total_energy > 0:
low_freq_ratio = low_freq_energy / total_energy
mid_freq_ratio = mid_freq_energy / total_energy
high_freq_ratio = high_freq_energy / total_energy
else:
low_freq_ratio = mid_freq_ratio = high_freq_ratio = 1 / 3
return {
"mean_energy": float(mean_energy),
"energy_std": float(energy_std),
"energy_dynamic_range": float(energy_dynamic_range),
"frequency_distribution": {
"low_freq": float(low_freq_ratio),
"mid_freq": float(mid_freq_ratio),
"high_freq": float(high_freq_ratio)
}
}
def feature_to_valence_arousal(self, features):
# Normalization for typical pop values
# tempo: 40-180 BPM, energy: 0.08-0.5 (librosa RMS), brightness: 0.25-0.7
tempo_norm = np.clip((features['tempo'] - 70) / (170 - 70), 0, 1)
energy_norm = np.clip((features['energy'] - 0.08) / (0.5 - 0.08), 0, 1)
brightness_norm = np.clip((features['brightness'] - 0.25) / (0.7 - 0.25), 0, 1)
rhythm_complexity_norm = np.clip((features['rhythm_complexity'] - 0.1) / (0.8 - 0.1), 0, 1)
valence = (
self.feature_weights['mode'] * (1.0 if features['is_major'] else 0.0) +
self.feature_weights['tempo'] * tempo_norm +
self.feature_weights['energy'] * energy_norm +
self.feature_weights['brightness'] * brightness_norm
)
arousal = (
self.feature_weights['tempo'] * tempo_norm +
self.feature_weights['energy'] * energy_norm +
self.feature_weights['brightness'] * brightness_norm +
self.feature_weights['rhythm_complexity'] * rhythm_complexity_norm
)
# Explicit bias: if major mode + tempo > 100 + brightness > 0.5, boost valence/arousal toward happy/excited
if features['is_major'] and features['tempo'] > 100 and features['brightness'] > 0.5:
valence = max(valence, 0.85)
arousal = max(arousal, 0.7)
return float(np.clip(valence, 0, 1)), float(np.clip(arousal, 0, 1))
def analyze_emotion(self, rhythm_data, tonal_data, energy_data):
features = {
'tempo': rhythm_data['tempo'],
'energy': energy_data['mean_energy'],
'is_major': tonal_data['is_major'],
'brightness': tonal_data['brightness'],
'rhythm_complexity': rhythm_data['rhythm_complexity']
}
valence, arousal = self.feature_to_valence_arousal(features)
emotion_scores = {}
for emotion, va in self.emotion_classes.items():
dist = np.sqrt((valence - va['valence']) ** 2 + (arousal - va['arousal']) ** 2)
emotion_scores[emotion] = 1.0 - dist # Higher = closer
primary_emotion = max(emotion_scores.items(), key=lambda x: x[1])
sorted_emotions = sorted(emotion_scores.items(), key=lambda x: x[1], reverse=True)
secondary_emotion = sorted_emotions[1][0] if len(sorted_emotions) > 1 else None
return {
"primary_emotion": primary_emotion[0],
"confidence": float(primary_emotion[1]),
"emotion_scores": {k: float(v) for k, v in emotion_scores.items()},
"valence": valence,
"arousal": arousal,
"secondary_emotion": secondary_emotion
}
def analyze_theme(self, rhythm_data, tonal_data, emotion_data):
primary_emotion = emotion_data['primary_emotion']
secondary_emotion = emotion_data.get('secondary_emotion')
theme_scores = {}
for theme, emolist in self.theme_classes.items():
score = 0.0
if primary_emotion in emolist:
score += 0.7
if secondary_emotion in emolist:
score += 0.3
harmony_complexity = tonal_data.get('harmony_complexity', 0.5)
if theme in ['adventure', 'conflict']:
score += 0.3 * np.clip((harmony_complexity - 0.4) / 0.6, 0, 1)
elif theme in ['love', 'reflection']:
score += 0.3 * np.clip((0.6 - harmony_complexity) / 0.6, 0, 1)
theme_scores[theme] = float(np.clip(score, 0, 1))
primary_theme = max(theme_scores.items(), key=lambda x: x[1])
secondary_themes = [k for k, v in sorted(theme_scores.items(), key=lambda x: x[1], reverse=True)
if k != primary_theme[0] and v > 0.5]
return {
"primary_theme": primary_theme[0],
"confidence": primary_theme[1],
"secondary_themes": secondary_themes[:2],
"theme_scores": theme_scores
}
def analyze_music(self, file_path):
y, sr = self.load_audio(file_path)
if y is None:
return {"error": "Failed to load audio file"}
rhythm_data = self.analyze_rhythm(y, sr)
tonal_data = self.analyze_tonality(y, sr)
energy_data = self.analyze_energy(y, sr)
emotion_data = self.analyze_emotion(rhythm_data, tonal_data, energy_data)
theme_data = self.analyze_theme(rhythm_data, tonal_data, emotion_data)
def convert_numpy_to_python(obj):
if isinstance(obj, dict):
return {k: convert_numpy_to_python(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [convert_numpy_to_python(item) for item in obj]
elif isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, np.number):
return float(obj)
else:
return obj
rhythm_data = convert_numpy_to_python(rhythm_data)
tonal_data = convert_numpy_to_python(tonal_data)
energy_data = convert_numpy_to_python(energy_data)
emotion_data = convert_numpy_to_python(emotion_data)
theme_data = convert_numpy_to_python(theme_data)
return {
"file": file_path,
"rhythm_analysis": rhythm_data,
"tonal_analysis": tonal_data,
"energy_analysis": energy_data,
"emotion_analysis": emotion_data,
"theme_analysis": theme_data,
"summary": {
"tempo": float(rhythm_data["tempo"]),
"primary_emotion": emotion_data["primary_emotion"],
"primary_theme": theme_data["primary_theme"]
}
}
# Create an instance of the analyzer
analyzer = MusicAnalyzer()
# The following code is for demonstration purposes only
# and will only run if executed directly (not when imported)
if __name__ == "__main__":
# Replace this with a real audio file path when running as a script
demo_file = "path/to/your/audio/file.mp3"
# Analyze the uploaded audio file
results = analyzer.analyze_music(demo_file)
# Print analysis summary
print("\n=== MUSIC ANALYSIS SUMMARY ===")
print(f"Tempo: {results['summary']['tempo']:.1f} BPM")
print(f"Primary Emotion: {results['summary']['primary_emotion']}")
print(f"Primary Theme: {results['summary']['primary_theme']}")
# Show detailed results (optional)
import json
print("\n=== DETAILED ANALYSIS ===")
print(json.dumps(results, indent=2))
# Visualize the analysis
# analyzer.visualize_analysis(demo_file) |