import torch import numpy as np import librosa def load_audio(audio_file, sr=22050): """Load an audio file and convert to mono if needed.""" try: # Try to load audio with librosa y, sr = librosa.load(audio_file, sr=sr, mono=True) return y, sr except Exception as e: print(f"Error loading audio with librosa: {str(e)}") # Fallback to basic loading if necessary import soundfile as sf try: y, sr = sf.read(audio_file) # Convert to mono if stereo if len(y.shape) > 1: y = y.mean(axis=1) return y, sr except Exception as e2: print(f"Error loading audio with soundfile: {str(e2)}") raise ValueError(f"Could not load audio file: {audio_file}") def extract_audio_duration(y, sr): """Get the duration of audio in seconds.""" return len(y) / sr def extract_mfcc_features(y, sr, n_mfcc=20): """Extract MFCC features from audio.""" try: mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=n_mfcc) mfccs_mean = np.mean(mfccs.T, axis=0) return mfccs_mean except Exception as e: print(f"Error extracting MFCCs: {str(e)}") # Return a fallback feature vector if extraction fails return np.zeros(n_mfcc) def calculate_lyrics_length(duration): """ Calculate appropriate lyrics length based on audio duration. Uses a more conservative calculation that generates shorter lyrics: - Average words per line (8-10 words) - Reduced words per minute (45 words instead of 135) - Simplified song structure """ # Convert duration to minutes duration_minutes = duration / 60 # Calculate total words based on duration # Using 45 words per minute (reduced from 135) total_words = int(duration_minutes * 90) # Calculate number of lines # Assuming 8-10 words per line words_per_line = 9 # average total_lines = total_words // words_per_line # Adjust for song structure with shorter lengths if total_lines < 6: # Very short song - keep it simple return max(2, total_lines) elif total_lines < 10: # Short song - one verse and chorus return min(6, total_lines) elif total_lines < 15: # Medium song - two verses and chorus return min(10, total_lines) else: # Longer song - two verses, chorus, and bridge return min(15, total_lines) def format_genre_results(top_genres): """Format genre classification results for display.""" result = "Top Detected Genres:\n" for genre, confidence in top_genres: result += f"- {genre}: {confidence*100:.2f}%\n" return result def ensure_cuda_availability(): """Check and report CUDA availability for informational purposes.""" cuda_available = torch.cuda.is_available() if cuda_available: device_count = torch.cuda.device_count() device_name = torch.cuda.get_device_name(0) if device_count > 0 else "Unknown" print(f"CUDA is available with {device_count} device(s). Using: {device_name}") else: print("CUDA is not available. Using CPU for inference.") return cuda_available def preprocess_audio_for_model(waveform, sample_rate, target_sample_rate=16000, max_length=16000): """Preprocess audio for model input (resample, pad/trim).""" # Resample if needed if sample_rate != target_sample_rate: waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=target_sample_rate) # Trim or pad to expected length if len(waveform) > max_length: waveform = waveform[:max_length] elif len(waveform) < max_length: padding = max_length - len(waveform) waveform = np.pad(waveform, (0, padding), 'constant') return waveform