File size: 27,090 Bytes
9e21eef 38b696f 9e21eef 00af04f 9e21eef 38b696f 9e21eef 38b696f 9e21eef 38b696f 9e21eef 38b696f 9e21eef 38b696f 9e21eef 38b696f 9e21eef 38b696f 9e21eef 38b696f 9e21eef 38b696f 9e21eef 38b696f 9e21eef 38b696f 4af3315 38b696f 4af3315 38b696f 9e21eef 4af3315 9e21eef 00af04f 9e21eef 00af04f 9e21eef 00af04f 9e21eef 00af04f 38b696f 9e21eef 38b696f 00af04f 38b696f 00af04f 9e21eef 4af3315 9e21eef 00af04f 9e21eef 4af3315 9e21eef 4af3315 9e21eef 4af3315 9e21eef 00af04f 9e21eef 00af04f 38b696f 00af04f 9e21eef 4af3315 00af04f 4af3315 9e21eef 00af04f 9e21eef 4af3315 9e21eef 38b696f 9e21eef 38b696f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
import os
import io
import gradio as gr
import torch
import numpy as np
from transformers import (
AutoModelForAudioClassification,
AutoFeatureExtractor,
AutoTokenizer,
pipeline,
AutoModelForCausalLM,
BitsAndBytesConfig
)
from huggingface_hub import login
from utils import (
load_audio,
extract_audio_duration,
extract_mfcc_features,
calculate_lyrics_length,
format_genre_results,
ensure_cuda_availability,
preprocess_audio_for_model
)
from emotionanalysis import MusicAnalyzer
import librosa
# Login to Hugging Face Hub if token is provided
if "HF_TOKEN" in os.environ:
login(token=os.environ["HF_TOKEN"])
# Constants
GENRE_MODEL_NAME = "dima806/music_genres_classification"
MUSIC_DETECTION_MODEL = "MIT/ast-finetuned-audioset-10-10-0.4593"
LLM_MODEL_NAME = "meta-llama/Llama-3.1-8B-Instruct"
SAMPLE_RATE = 22050 # Standard sample rate for audio processing
# Check CUDA availability (for informational purposes)
CUDA_AVAILABLE = ensure_cuda_availability()
# Create music detection pipeline
print(f"Loading music detection model: {MUSIC_DETECTION_MODEL}")
try:
music_detector = pipeline(
"audio-classification",
model=MUSIC_DETECTION_MODEL,
device=0 if CUDA_AVAILABLE else -1
)
print("Successfully loaded music detection pipeline")
except Exception as e:
print(f"Error creating music detection pipeline: {str(e)}")
# Fallback to manual loading
try:
music_processor = AutoFeatureExtractor.from_pretrained(MUSIC_DETECTION_MODEL)
music_model = AutoModelForAudioClassification.from_pretrained(MUSIC_DETECTION_MODEL)
print("Successfully loaded music detection model and feature extractor")
except Exception as e2:
print(f"Error loading music detection model components: {str(e2)}")
raise RuntimeError(f"Could not load music detection model: {str(e2)}")
# Create genre classification pipeline
print(f"Loading audio classification model: {GENRE_MODEL_NAME}")
try:
genre_classifier = pipeline(
"audio-classification",
model=GENRE_MODEL_NAME,
device=0 if CUDA_AVAILABLE else -1
)
print("Successfully loaded audio classification pipeline")
except Exception as e:
print(f"Error creating pipeline: {str(e)}")
# Fallback to manual loading
try:
genre_processor = AutoFeatureExtractor.from_pretrained(GENRE_MODEL_NAME)
genre_model = AutoModelForAudioClassification.from_pretrained(GENRE_MODEL_NAME)
print("Successfully loaded audio classification model and feature extractor")
except Exception as e2:
print(f"Error loading model components: {str(e2)}")
raise RuntimeError(f"Could not load genre classification model: {str(e2)}")
# Load LLM with appropriate quantization for T4 GPU
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
llm_model = AutoModelForCausalLM.from_pretrained(
LLM_MODEL_NAME,
device_map="auto",
quantization_config=bnb_config,
torch_dtype=torch.float16,
)
# Create LLM pipeline
llm_pipeline = pipeline(
"text-generation",
model=llm_model,
tokenizer=llm_tokenizer,
max_new_tokens=512,
)
# Initialize music emotion analyzer
music_analyzer = MusicAnalyzer()
def extract_audio_features(audio_file):
"""Extract audio features from an audio file."""
try:
# Load the audio file using utility function
y, sr = load_audio(audio_file, SAMPLE_RATE)
if y is None or sr is None:
raise ValueError("Failed to load audio data")
# Get audio duration in seconds
duration = extract_audio_duration(y, sr)
# Extract MFCCs for genre classification (may not be needed with the pipeline)
mfccs_mean = extract_mfcc_features(y, sr, n_mfcc=20)
return {
"features": mfccs_mean,
"duration": duration,
"waveform": y,
"sample_rate": sr,
"path": audio_file # Keep path for the pipeline
}
except Exception as e:
print(f"Error extracting audio features: {str(e)}")
raise ValueError(f"Failed to extract audio features: {str(e)}")
def classify_genre(audio_data):
"""Classify the genre of the audio using the loaded model."""
try:
# First attempt: Try using the pipeline if available
if 'genre_classifier' in globals():
results = genre_classifier(audio_data["path"])
# Transform pipeline results to our expected format
top_genres = [(result["label"], result["score"]) for result in results[:3]]
return top_genres
# Second attempt: Use manually loaded model components
elif 'genre_processor' in globals() and 'genre_model' in globals():
# Process audio input with feature extractor
inputs = genre_processor(
audio_data["waveform"],
sampling_rate=audio_data["sample_rate"],
return_tensors="pt"
)
with torch.no_grad():
outputs = genre_model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
# Get the top 3 genres
values, indices = torch.topk(predictions, 3)
# Map indices to genre labels
genre_labels = genre_model.config.id2label
top_genres = []
for i, (value, index) in enumerate(zip(values[0], indices[0])):
genre = genre_labels[index.item()]
confidence = value.item()
top_genres.append((genre, confidence))
return top_genres
else:
raise ValueError("No genre classification model available")
except Exception as e:
print(f"Error in genre classification: {str(e)}")
# Fallback: return a default genre if everything fails
return [("rock", 1.0)]
def detect_music(audio_data):
"""Detect if the audio is music using the MIT AST model."""
try:
# First attempt: Try using the pipeline if available
if 'music_detector' in globals():
results = music_detector(audio_data["path"])
# Look for music-related classes in the results
music_confidence = 0.0
for result in results:
label = result["label"].lower()
if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
music_confidence = max(music_confidence, result["score"])
return music_confidence >= 0.2, results
# Second attempt: Use manually loaded model components
elif 'music_processor' in globals() and 'music_model' in globals():
# Process audio input with feature extractor
inputs = music_processor(
audio_data["waveform"],
sampling_rate=audio_data["sample_rate"],
return_tensors="pt"
)
with torch.no_grad():
outputs = music_model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
# Get the top predictions
values, indices = torch.topk(predictions, 5)
# Map indices to labels
labels = music_model.config.id2label
# Check for music-related classes
music_confidence = 0.0
results = []
for i, (value, index) in enumerate(zip(values[0], indices[0])):
label = labels[index.item()].lower()
score = value.item()
results.append({"label": label, "score": score})
if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
music_confidence = max(music_confidence, score)
return music_confidence >= 0.2, results
else:
raise ValueError("No music detection model available")
except Exception as e:
print(f"Error in music detection: {str(e)}")
return False, []
def detect_beats(y, sr):
"""Detect beats in the audio using librosa."""
# Get tempo and beat frames
tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)
# Convert beat frames to time in seconds
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
return {
"tempo": tempo,
"beat_frames": beat_frames,
"beat_times": beat_times,
"beat_count": len(beat_times)
}
def detect_sections(y, sr):
"""Detect sections (verse, chorus, etc.) in the audio."""
# Compute the spectral contrast
S = np.abs(librosa.stft(y))
contrast = librosa.feature.spectral_contrast(S=S, sr=sr)
# Compute the chroma features
chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
# Use a combination of contrast and chroma to find segment boundaries
# Average over frequency axis to get time series
contrast_avg = np.mean(contrast, axis=0)
chroma_avg = np.mean(chroma, axis=0)
# Normalize
contrast_avg = (contrast_avg - np.mean(contrast_avg)) / np.std(contrast_avg)
chroma_avg = (chroma_avg - np.mean(chroma_avg)) / np.std(chroma_avg)
# Combine features
combined = contrast_avg + chroma_avg
# Detect structural boundaries
bounds = librosa.segment.agglomerative(combined, 3) # Adjust for typical song structures
# Convert to time in seconds
bound_times = librosa.frames_to_time(bounds, sr=sr)
# Estimate section types based on position and length
sections = []
for i in range(len(bound_times) - 1):
start = bound_times[i]
end = bound_times[i+1]
duration = end - start
# Simple heuristic to label sections
if i == 0:
section_type = "intro"
elif i == len(bound_times) - 2:
section_type = "outro"
elif i % 2 == 1: # Alternating verse/chorus pattern
section_type = "chorus"
else:
section_type = "verse"
# If we have a short section in the middle, it might be a bridge
if 0 < i < len(bound_times) - 2 and duration < 20:
section_type = "bridge"
sections.append({
"type": section_type,
"start": start,
"end": end,
"duration": duration
})
return sections
def estimate_syllables_per_section(beats_info, sections):
"""Estimate the number of syllables needed for each section based on beats."""
syllables_per_section = []
for section in sections:
# Find beats that fall within this section
section_beats = [
beat for beat in beats_info["beat_times"]
if section["start"] <= beat < section["end"]
]
# Calculate syllables based on section type and beat count
beat_count = len(section_beats)
# Adjust syllable count based on section type and genre conventions
if section["type"] == "verse":
# Verses typically have more syllables per beat (more words)
syllable_count = beat_count * 1.2
elif section["type"] == "chorus":
# Choruses often have fewer syllables per beat (more sustained notes)
syllable_count = beat_count * 0.9
elif section["type"] == "bridge":
syllable_count = beat_count * 1.0
else: # intro, outro
syllable_count = beat_count * 0.5 # Often instrumental or sparse lyrics
syllables_per_section.append({
"type": section["type"],
"start": section["start"],
"end": section["end"],
"duration": section["duration"],
"beat_count": beat_count,
"syllable_count": int(syllable_count)
})
return syllables_per_section
def calculate_detailed_song_structure(audio_data):
"""Calculate detailed song structure for better lyrics generation."""
y = audio_data["waveform"]
sr = audio_data["sample_rate"]
# Detect beats
beats_info = detect_beats(y, sr)
# Detect sections
sections = detect_sections(y, sr)
# Estimate syllables per section
syllables_info = estimate_syllables_per_section(beats_info, sections)
return {
"beats": beats_info,
"sections": sections,
"syllables": syllables_info
}
def generate_lyrics(genre, duration, emotion_results, song_structure=None):
"""Generate lyrics based on genre, duration, emotion, and detailed song structure."""
# If no song structure is provided, fall back to the original approach
if song_structure is None:
# Calculate appropriate lyrics length based on audio duration
lines_count = calculate_lyrics_length(duration)
# Calculate approximate number of verses and chorus
if lines_count <= 6:
# Very short song - one verse and chorus
verse_lines = 2
chorus_lines = 2
elif lines_count <= 10:
# Medium song - two verses and chorus
verse_lines = 3
chorus_lines = 2
else:
# Longer song - two verses, chorus, and bridge
verse_lines = 3
chorus_lines = 2
# Extract emotion and theme data from analysis results
primary_emotion = emotion_results["emotion_analysis"]["primary_emotion"]
primary_theme = emotion_results["theme_analysis"]["primary_theme"]
tempo = emotion_results["rhythm_analysis"]["tempo"]
key = emotion_results["tonal_analysis"]["key"]
mode = emotion_results["tonal_analysis"]["mode"]
# Create prompt for the LLM
prompt = f"""
You are a talented songwriter who specializes in {genre} music.
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.
Music analysis has detected the following qualities in the music:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}
The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Be approximately {lines_count} lines long
- Have a coherent theme and flow
- Follow this structure:
* Verse: {verse_lines} lines
* Chorus: {chorus_lines} lines
* {f'Bridge: 2 lines' if lines_count > 10 else ''}
- Be completely original
- Match the song duration of {duration:.1f} seconds
- Keep each line concise and impactful
Your lyrics:
"""
else:
# Extract emotion and theme data from analysis results
primary_emotion = emotion_results["emotion_analysis"]["primary_emotion"]
primary_theme = emotion_results["theme_analysis"]["primary_theme"]
tempo = emotion_results["rhythm_analysis"]["tempo"]
key = emotion_results["tonal_analysis"]["key"]
mode = emotion_results["tonal_analysis"]["mode"]
# Create detailed structure instructions for the LLM
structure_instructions = "Follow this exact song structure with specified syllable counts:\n"
for section in song_structure["syllables"]:
section_type = section["type"].capitalize()
start_time = f"{section['start']:.1f}"
end_time = f"{section['end']:.1f}"
duration = f"{section['duration']:.1f}"
beat_count = section["beat_count"]
syllable_count = section["syllable_count"]
structure_instructions += f"* {section_type} ({start_time}s - {end_time}s, {duration}s duration):\n"
structure_instructions += f" - {beat_count} beats\n"
structure_instructions += f" - Approximately {syllable_count} syllables\n"
# Calculate approximate total number of lines based on syllables
total_syllables = sum(section["syllable_count"] for section in song_structure["syllables"])
estimated_lines = max(4, int(total_syllables / 8)) # Rough estimate: average 8 syllables per line
# Create prompt for the LLM
prompt = f"""
You are a talented songwriter who specializes in {genre} music.
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.
Music analysis has detected the following qualities in the music:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}
{structure_instructions}
The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Have approximately {estimated_lines} lines total, distributed across sections
- For each line, include a syllable count that matches the beats in that section
- Include timestamps [MM:SS] at the beginning of each section
- Be completely original
- Match the exact song structure provided above
Important: Each section should have lyrics with syllable counts matching the beats!
Your lyrics:
"""
# Generate lyrics using the LLM
response = llm_pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1,
return_full_text=False
)
# Extract and clean generated lyrics
lyrics = response[0]["generated_text"].strip()
# Add section labels if they're not present (in fallback mode)
if song_structure is None and "Verse" not in lyrics and "Chorus" not in lyrics:
lines = lyrics.split('\n')
formatted_lyrics = []
current_section = "Verse"
verse_count = 0
for i, line in enumerate(lines):
if i == 0:
formatted_lyrics.append("[Verse]")
verse_count = 1
elif i == verse_lines:
formatted_lyrics.append("\n[Chorus]")
elif i == verse_lines + chorus_lines and lines_count > 10:
formatted_lyrics.append("\n[Bridge]")
elif i == verse_lines + chorus_lines + (2 if lines_count > 10 else 0):
formatted_lyrics.append("\n[Verse]")
verse_count = 2
formatted_lyrics.append(line)
lyrics = '\n'.join(formatted_lyrics)
# Add timestamps in detailed mode if needed
elif song_structure is not None:
# Ensure the lyrics have proper section headings with timestamps
for section in song_structure["syllables"]:
section_type = section["type"].capitalize()
start_time_str = f"{int(section['start']) // 60:02d}:{int(section['start']) % 60:02d}"
section_header = f"[{start_time_str}] {section_type}"
# Check if this section header is missing and add it if needed
if section_header not in lyrics and section["type"] not in ["intro", "outro"]:
# Find where this section might be based on timestamp
time_matches = [
idx for idx, line in enumerate(lyrics.split('\n'))
if f"{int(section['start']) // 60:02d}:{int(section['start']) % 60:02d}" in line
]
if time_matches:
lines = lyrics.split('\n')
line_idx = time_matches[0]
lines[line_idx] = section_header
lyrics = '\n'.join(lines)
return lyrics
def process_audio(audio_file):
"""Main function to process audio file, classify genre, and generate lyrics."""
if audio_file is None:
return "Please upload an audio file.", None, None
try:
# Extract audio features
audio_data = extract_audio_features(audio_file)
# First check if it's music
try:
is_music, ast_results = detect_music(audio_data)
except Exception as e:
print(f"Error in music detection: {str(e)}")
return f"Error in music detection: {str(e)}", None, []
if not is_music:
return "The uploaded audio does not appear to be music. Please upload a music file.", None, ast_results
# Classify genre
try:
top_genres = classify_genre(audio_data)
# Format genre results using utility function
genre_results = format_genre_results(top_genres)
except Exception as e:
print(f"Error in genre classification: {str(e)}")
return f"Error in genre classification: {str(e)}", None, ast_results
# Analyze music emotions and themes
try:
emotion_results = music_analyzer.analyze_music(audio_file)
except Exception as e:
print(f"Error in emotion analysis: {str(e)}")
# Continue even if emotion analysis fails
emotion_results = {
"emotion_analysis": {"primary_emotion": "Unknown"},
"theme_analysis": {"primary_theme": "Unknown"},
"rhythm_analysis": {"tempo": 0},
"tonal_analysis": {"key": "Unknown", "mode": ""}
}
# Calculate detailed song structure for better lyrics alignment
try:
song_structure = calculate_detailed_song_structure(audio_data)
except Exception as e:
print(f"Error analyzing song structure: {str(e)}")
# Continue with a simpler approach if this fails
song_structure = None
# Generate lyrics based on top genre, emotion analysis, and song structure
try:
primary_genre, _ = top_genres[0]
lyrics = generate_lyrics(primary_genre, audio_data["duration"], emotion_results, song_structure)
except Exception as e:
print(f"Error generating lyrics: {str(e)}")
lyrics = f"Error generating lyrics: {str(e)}"
return genre_results, lyrics, ast_results
except Exception as e:
error_msg = f"Error processing audio: {str(e)}"
print(error_msg)
return error_msg, None, []
# Create Gradio interface
with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
gr.Markdown("# Music Genre Classifier & Lyrics Generator")
gr.Markdown("Upload a music file to classify its genre, analyze its emotions, and generate matching lyrics.")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(label="Upload Music", type="filepath")
submit_btn = gr.Button("Analyze & Generate")
with gr.Column():
genre_output = gr.Textbox(label="Detected Genres", lines=5)
emotion_output = gr.Textbox(label="Emotion Analysis", lines=5)
ast_output = gr.Textbox(label="Audio Classification Results (AST)", lines=5)
lyrics_output = gr.Textbox(label="Generated Lyrics", lines=15)
def display_results(audio_file):
if audio_file is None:
return "Please upload an audio file.", "No emotion analysis available.", "No audio classification available.", None
try:
# Process audio and get genre, lyrics, and AST results
genre_results, lyrics, ast_results = process_audio(audio_file)
# Check if we got an error message instead of results
if isinstance(genre_results, str) and genre_results.startswith("Error"):
return genre_results, "Error in emotion analysis", "Error in audio classification", None
# Format emotion analysis results
try:
emotion_results = music_analyzer.analyze_music(audio_file)
emotion_text = f"Tempo: {emotion_results['summary']['tempo']:.1f} BPM\n"
emotion_text += f"Key: {emotion_results['summary']['key']} {emotion_results['summary']['mode']}\n"
emotion_text += f"Primary Emotion: {emotion_results['summary']['primary_emotion']}\n"
emotion_text += f"Primary Theme: {emotion_results['summary']['primary_theme']}"
# Add detailed song structure information if available
try:
audio_data = extract_audio_features(audio_file)
song_structure = calculate_detailed_song_structure(audio_data)
emotion_text += "\n\nSong Structure:\n"
for section in song_structure["syllables"]:
emotion_text += f"- {section['type'].capitalize()}: {section['start']:.1f}s to {section['end']:.1f}s "
emotion_text += f"({section['duration']:.1f}s, {section['beat_count']} beats, ~{section['syllable_count']} syllables)\n"
except Exception as e:
print(f"Error displaying song structure: {str(e)}")
# Continue without showing structure details
except Exception as e:
print(f"Error in emotion analysis: {str(e)}")
emotion_text = f"Error in emotion analysis: {str(e)}"
# Format AST classification results
if ast_results and isinstance(ast_results, list):
ast_text = "Audio Classification Results (AST Model):\n"
for result in ast_results[:5]: # Show top 5 results
ast_text += f"{result['label']}: {result['score']*100:.2f}%\n"
else:
ast_text = "No valid audio classification results available."
return genre_results, emotion_text, ast_text, lyrics
except Exception as e:
error_msg = f"Error: {str(e)}"
print(error_msg)
return error_msg, "Error in emotion analysis", "Error in audio classification", None
submit_btn.click(
fn=display_results,
inputs=[audio_input],
outputs=[genre_output, emotion_output, ast_output, lyrics_output]
)
gr.Markdown("### How it works")
gr.Markdown("""
1. Upload an audio file of your choice
2. The system will classify the genre using the dima806/music_genres_classification model
3. The system will analyze the musical emotion and theme using advanced audio processing
4. The system will identify the song structure, beats, and timing patterns
5. Based on the detected genre, emotion, and structure, it will generate lyrics that match the beats, sections, and flow of the music
6. The lyrics will include appropriate section markings and syllable counts to align with the music
""")
# Launch the app
demo.launch() |