File size: 27,090 Bytes
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00af04f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e21eef
38b696f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e21eef
38b696f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e21eef
38b696f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
 
9e21eef
 
 
38b696f
 
9e21eef
 
 
38b696f
9e21eef
 
 
 
38b696f
 
 
9e21eef
38b696f
9e21eef
 
38b696f
 
 
 
 
 
 
4af3315
38b696f
 
 
 
 
 
 
4af3315
38b696f
 
 
 
 
 
 
9e21eef
 
 
 
4af3315
9e21eef
 
 
 
 
 
00af04f
 
 
 
 
 
9e21eef
00af04f
9e21eef
 
00af04f
 
 
 
 
 
 
9e21eef
 
00af04f
 
 
 
 
38b696f
 
 
 
 
 
9e21eef
38b696f
 
 
 
 
 
 
 
 
00af04f
 
38b696f
00af04f
 
 
9e21eef
4af3315
9e21eef
 
00af04f
 
 
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
4af3315
9e21eef
 
 
 
4af3315
9e21eef
 
4af3315
 
9e21eef
00af04f
 
 
 
9e21eef
00af04f
 
 
 
 
 
38b696f
 
 
 
 
 
 
 
 
 
 
 
 
 
00af04f
 
 
9e21eef
4af3315
00af04f
 
 
 
 
 
4af3315
 
9e21eef
00af04f
 
 
9e21eef
 
 
 
4af3315
9e21eef
 
 
 
 
 
 
38b696f
 
 
9e21eef
 
 
38b696f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
import os
import io
import gradio as gr
import torch
import numpy as np
from transformers import (
    AutoModelForAudioClassification,
    AutoFeatureExtractor,
    AutoTokenizer,
    pipeline,
    AutoModelForCausalLM,
    BitsAndBytesConfig
)
from huggingface_hub import login
from utils import (
    load_audio,
    extract_audio_duration,
    extract_mfcc_features,
    calculate_lyrics_length,
    format_genre_results,
    ensure_cuda_availability,
    preprocess_audio_for_model
)
from emotionanalysis import MusicAnalyzer
import librosa

# Login to Hugging Face Hub if token is provided
if "HF_TOKEN" in os.environ:
    login(token=os.environ["HF_TOKEN"])

# Constants
GENRE_MODEL_NAME = "dima806/music_genres_classification"
MUSIC_DETECTION_MODEL = "MIT/ast-finetuned-audioset-10-10-0.4593"
LLM_MODEL_NAME = "meta-llama/Llama-3.1-8B-Instruct"
SAMPLE_RATE = 22050  # Standard sample rate for audio processing

# Check CUDA availability (for informational purposes)
CUDA_AVAILABLE = ensure_cuda_availability()

# Create music detection pipeline
print(f"Loading music detection model: {MUSIC_DETECTION_MODEL}")
try:
    music_detector = pipeline(
        "audio-classification",
        model=MUSIC_DETECTION_MODEL,
        device=0 if CUDA_AVAILABLE else -1
    )
    print("Successfully loaded music detection pipeline")
except Exception as e:
    print(f"Error creating music detection pipeline: {str(e)}")
    # Fallback to manual loading
    try:
        music_processor = AutoFeatureExtractor.from_pretrained(MUSIC_DETECTION_MODEL)
        music_model = AutoModelForAudioClassification.from_pretrained(MUSIC_DETECTION_MODEL)
        print("Successfully loaded music detection model and feature extractor")
    except Exception as e2:
        print(f"Error loading music detection model components: {str(e2)}")
        raise RuntimeError(f"Could not load music detection model: {str(e2)}")

# Create genre classification pipeline
print(f"Loading audio classification model: {GENRE_MODEL_NAME}")
try:
    genre_classifier = pipeline(
        "audio-classification",
        model=GENRE_MODEL_NAME,
        device=0 if CUDA_AVAILABLE else -1
    )
    print("Successfully loaded audio classification pipeline")
except Exception as e:
    print(f"Error creating pipeline: {str(e)}")
    # Fallback to manual loading
    try:
        genre_processor = AutoFeatureExtractor.from_pretrained(GENRE_MODEL_NAME)
        genre_model = AutoModelForAudioClassification.from_pretrained(GENRE_MODEL_NAME)
        print("Successfully loaded audio classification model and feature extractor")
    except Exception as e2:
        print(f"Error loading model components: {str(e2)}")
        raise RuntimeError(f"Could not load genre classification model: {str(e2)}")

# Load LLM with appropriate quantization for T4 GPU
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.float16,
)

llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
llm_model = AutoModelForCausalLM.from_pretrained(
    LLM_MODEL_NAME,
    device_map="auto",
    quantization_config=bnb_config,
    torch_dtype=torch.float16,
)

# Create LLM pipeline
llm_pipeline = pipeline(
    "text-generation",
    model=llm_model,
    tokenizer=llm_tokenizer,
    max_new_tokens=512,
)

# Initialize music emotion analyzer
music_analyzer = MusicAnalyzer()

def extract_audio_features(audio_file):
    """Extract audio features from an audio file."""
    try:
        # Load the audio file using utility function
        y, sr = load_audio(audio_file, SAMPLE_RATE)
        
        if y is None or sr is None:
            raise ValueError("Failed to load audio data")
        
        # Get audio duration in seconds
        duration = extract_audio_duration(y, sr)
        
        # Extract MFCCs for genre classification (may not be needed with the pipeline)
        mfccs_mean = extract_mfcc_features(y, sr, n_mfcc=20)
        
        return {
            "features": mfccs_mean,
            "duration": duration,
            "waveform": y,
            "sample_rate": sr,
            "path": audio_file  # Keep path for the pipeline
        }
    except Exception as e:
        print(f"Error extracting audio features: {str(e)}")
        raise ValueError(f"Failed to extract audio features: {str(e)}")

def classify_genre(audio_data):
    """Classify the genre of the audio using the loaded model."""
    try:
        # First attempt: Try using the pipeline if available
        if 'genre_classifier' in globals():
            results = genre_classifier(audio_data["path"])
            # Transform pipeline results to our expected format
            top_genres = [(result["label"], result["score"]) for result in results[:3]]
            return top_genres
        
        # Second attempt: Use manually loaded model components
        elif 'genre_processor' in globals() and 'genre_model' in globals():
            # Process audio input with feature extractor
            inputs = genre_processor(
                audio_data["waveform"], 
                sampling_rate=audio_data["sample_rate"], 
                return_tensors="pt"
            )
            
            with torch.no_grad():
                outputs = genre_model(**inputs)
                predictions = outputs.logits.softmax(dim=-1)
            
            # Get the top 3 genres
            values, indices = torch.topk(predictions, 3)
            
            # Map indices to genre labels
            genre_labels = genre_model.config.id2label
            
            top_genres = []
            for i, (value, index) in enumerate(zip(values[0], indices[0])):
                genre = genre_labels[index.item()]
                confidence = value.item()
                top_genres.append((genre, confidence))
            
            return top_genres
        
        else:
            raise ValueError("No genre classification model available")
            
    except Exception as e:
        print(f"Error in genre classification: {str(e)}")
        # Fallback: return a default genre if everything fails
        return [("rock", 1.0)]

def detect_music(audio_data):
    """Detect if the audio is music using the MIT AST model."""
    try:
        # First attempt: Try using the pipeline if available
        if 'music_detector' in globals():
            results = music_detector(audio_data["path"])
            # Look for music-related classes in the results
            music_confidence = 0.0
            for result in results:
                label = result["label"].lower()
                if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
                    music_confidence = max(music_confidence, result["score"])
            return music_confidence >= 0.2, results
        
        # Second attempt: Use manually loaded model components
        elif 'music_processor' in globals() and 'music_model' in globals():
            # Process audio input with feature extractor
            inputs = music_processor(
                audio_data["waveform"], 
                sampling_rate=audio_data["sample_rate"], 
                return_tensors="pt"
            )
            
            with torch.no_grad():
                outputs = music_model(**inputs)
                predictions = outputs.logits.softmax(dim=-1)
            
            # Get the top predictions
            values, indices = torch.topk(predictions, 5)
            
            # Map indices to labels
            labels = music_model.config.id2label
            
            # Check for music-related classes
            music_confidence = 0.0
            results = []
            
            for i, (value, index) in enumerate(zip(values[0], indices[0])):
                label = labels[index.item()].lower()
                score = value.item()
                results.append({"label": label, "score": score})
                
                if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
                    music_confidence = max(music_confidence, score)
            
            return music_confidence >= 0.2, results
            
        else:
            raise ValueError("No music detection model available")
            
    except Exception as e:
        print(f"Error in music detection: {str(e)}")
        return False, []

def detect_beats(y, sr):
    """Detect beats in the audio using librosa."""
    # Get tempo and beat frames
    tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)
    
    # Convert beat frames to time in seconds
    beat_times = librosa.frames_to_time(beat_frames, sr=sr)
    
    return {
        "tempo": tempo,
        "beat_frames": beat_frames,
        "beat_times": beat_times,
        "beat_count": len(beat_times)
    }

def detect_sections(y, sr):
    """Detect sections (verse, chorus, etc.) in the audio."""
    # Compute the spectral contrast
    S = np.abs(librosa.stft(y))
    contrast = librosa.feature.spectral_contrast(S=S, sr=sr)
    
    # Compute the chroma features
    chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
    
    # Use a combination of contrast and chroma to find segment boundaries
    # Average over frequency axis to get time series
    contrast_avg = np.mean(contrast, axis=0)
    chroma_avg = np.mean(chroma, axis=0)
    
    # Normalize
    contrast_avg = (contrast_avg - np.mean(contrast_avg)) / np.std(contrast_avg)
    chroma_avg = (chroma_avg - np.mean(chroma_avg)) / np.std(chroma_avg)
    
    # Combine features
    combined = contrast_avg + chroma_avg
    
    # Detect structural boundaries
    bounds = librosa.segment.agglomerative(combined, 3)  # Adjust for typical song structures
    
    # Convert to time in seconds
    bound_times = librosa.frames_to_time(bounds, sr=sr)
    
    # Estimate section types based on position and length
    sections = []
    for i in range(len(bound_times) - 1):
        start = bound_times[i]
        end = bound_times[i+1]
        duration = end - start
        
        # Simple heuristic to label sections
        if i == 0:
            section_type = "intro"
        elif i == len(bound_times) - 2:
            section_type = "outro"
        elif i % 2 == 1:  # Alternating verse/chorus pattern
            section_type = "chorus"
        else:
            section_type = "verse"
            
        # If we have a short section in the middle, it might be a bridge
        if 0 < i < len(bound_times) - 2 and duration < 20:
            section_type = "bridge"
            
        sections.append({
            "type": section_type,
            "start": start,
            "end": end,
            "duration": duration
        })
    
    return sections

def estimate_syllables_per_section(beats_info, sections):
    """Estimate the number of syllables needed for each section based on beats."""
    syllables_per_section = []
    
    for section in sections:
        # Find beats that fall within this section
        section_beats = [
            beat for beat in beats_info["beat_times"] 
            if section["start"] <= beat < section["end"]
        ]
        
        # Calculate syllables based on section type and beat count
        beat_count = len(section_beats)
        
        # Adjust syllable count based on section type and genre conventions
        if section["type"] == "verse":
            # Verses typically have more syllables per beat (more words)
            syllable_count = beat_count * 1.2
        elif section["type"] == "chorus":
            # Choruses often have fewer syllables per beat (more sustained notes)
            syllable_count = beat_count * 0.9
        elif section["type"] == "bridge":
            syllable_count = beat_count * 1.0
        else:  # intro, outro
            syllable_count = beat_count * 0.5  # Often instrumental or sparse lyrics
        
        syllables_per_section.append({
            "type": section["type"],
            "start": section["start"],
            "end": section["end"],
            "duration": section["duration"],
            "beat_count": beat_count,
            "syllable_count": int(syllable_count)
        })
    
    return syllables_per_section

def calculate_detailed_song_structure(audio_data):
    """Calculate detailed song structure for better lyrics generation."""
    y = audio_data["waveform"]
    sr = audio_data["sample_rate"]
    
    # Detect beats
    beats_info = detect_beats(y, sr)
    
    # Detect sections
    sections = detect_sections(y, sr)
    
    # Estimate syllables per section
    syllables_info = estimate_syllables_per_section(beats_info, sections)
    
    return {
        "beats": beats_info,
        "sections": sections,
        "syllables": syllables_info
    }

def generate_lyrics(genre, duration, emotion_results, song_structure=None):
    """Generate lyrics based on genre, duration, emotion, and detailed song structure."""
    # If no song structure is provided, fall back to the original approach
    if song_structure is None:
        # Calculate appropriate lyrics length based on audio duration
        lines_count = calculate_lyrics_length(duration)
        
        # Calculate approximate number of verses and chorus
        if lines_count <= 6:
            # Very short song - one verse and chorus
            verse_lines = 2
            chorus_lines = 2
        elif lines_count <= 10:
            # Medium song - two verses and chorus
            verse_lines = 3
            chorus_lines = 2
        else:
            # Longer song - two verses, chorus, and bridge
            verse_lines = 3
            chorus_lines = 2
        
        # Extract emotion and theme data from analysis results
        primary_emotion = emotion_results["emotion_analysis"]["primary_emotion"]
        primary_theme = emotion_results["theme_analysis"]["primary_theme"]
        tempo = emotion_results["rhythm_analysis"]["tempo"]
        key = emotion_results["tonal_analysis"]["key"]
        mode = emotion_results["tonal_analysis"]["mode"]
        
        # Create prompt for the LLM
        prompt = f"""
You are a talented songwriter who specializes in {genre} music.
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.

Music analysis has detected the following qualities in the music:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}

The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Be approximately {lines_count} lines long
- Have a coherent theme and flow
- Follow this structure:
  * Verse: {verse_lines} lines
  * Chorus: {chorus_lines} lines
  * {f'Bridge: 2 lines' if lines_count > 10 else ''}
- Be completely original
- Match the song duration of {duration:.1f} seconds
- Keep each line concise and impactful

Your lyrics:
"""

    else:
        # Extract emotion and theme data from analysis results
        primary_emotion = emotion_results["emotion_analysis"]["primary_emotion"]
        primary_theme = emotion_results["theme_analysis"]["primary_theme"]
        tempo = emotion_results["rhythm_analysis"]["tempo"]
        key = emotion_results["tonal_analysis"]["key"]
        mode = emotion_results["tonal_analysis"]["mode"]
        
        # Create detailed structure instructions for the LLM
        structure_instructions = "Follow this exact song structure with specified syllable counts:\n"
        
        for section in song_structure["syllables"]:
            section_type = section["type"].capitalize()
            start_time = f"{section['start']:.1f}"
            end_time = f"{section['end']:.1f}"
            duration = f"{section['duration']:.1f}"
            beat_count = section["beat_count"]
            syllable_count = section["syllable_count"]
            
            structure_instructions += f"* {section_type} ({start_time}s - {end_time}s, {duration}s duration):\n"
            structure_instructions += f"  - {beat_count} beats\n"
            structure_instructions += f"  - Approximately {syllable_count} syllables\n"
        
        # Calculate approximate total number of lines based on syllables
        total_syllables = sum(section["syllable_count"] for section in song_structure["syllables"])
        estimated_lines = max(4, int(total_syllables / 8))  # Rough estimate: average 8 syllables per line
        
        # Create prompt for the LLM
        prompt = f"""
You are a talented songwriter who specializes in {genre} music.
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.

Music analysis has detected the following qualities in the music:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}

{structure_instructions}

The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Have approximately {estimated_lines} lines total, distributed across sections
- For each line, include a syllable count that matches the beats in that section
- Include timestamps [MM:SS] at the beginning of each section
- Be completely original
- Match the exact song structure provided above

Important: Each section should have lyrics with syllable counts matching the beats!

Your lyrics:
"""

    # Generate lyrics using the LLM
    response = llm_pipeline(
        prompt,
        do_sample=True,
        temperature=0.7,
        top_p=0.9,
        repetition_penalty=1.1,
        return_full_text=False
    )
    
    # Extract and clean generated lyrics
    lyrics = response[0]["generated_text"].strip()
    
    # Add section labels if they're not present (in fallback mode)
    if song_structure is None and "Verse" not in lyrics and "Chorus" not in lyrics:
        lines = lyrics.split('\n')
        formatted_lyrics = []
        current_section = "Verse"
        verse_count = 0
        
        for i, line in enumerate(lines):
            if i == 0:
                formatted_lyrics.append("[Verse]")
                verse_count = 1
            elif i == verse_lines:
                formatted_lyrics.append("\n[Chorus]")
            elif i == verse_lines + chorus_lines and lines_count > 10:
                formatted_lyrics.append("\n[Bridge]")
            elif i == verse_lines + chorus_lines + (2 if lines_count > 10 else 0):
                formatted_lyrics.append("\n[Verse]")
                verse_count = 2
            formatted_lyrics.append(line)
        
        lyrics = '\n'.join(formatted_lyrics)
    
    # Add timestamps in detailed mode if needed
    elif song_structure is not None:
        # Ensure the lyrics have proper section headings with timestamps
        for section in song_structure["syllables"]:
            section_type = section["type"].capitalize()
            start_time_str = f"{int(section['start']) // 60:02d}:{int(section['start']) % 60:02d}"
            section_header = f"[{start_time_str}] {section_type}"
            
            # Check if this section header is missing and add it if needed
            if section_header not in lyrics and section["type"] not in ["intro", "outro"]:
                # Find where this section might be based on timestamp
                time_matches = [
                    idx for idx, line in enumerate(lyrics.split('\n'))
                    if f"{int(section['start']) // 60:02d}:{int(section['start']) % 60:02d}" in line
                ]
                
                if time_matches:
                    lines = lyrics.split('\n')
                    line_idx = time_matches[0]
                    lines[line_idx] = section_header
                    lyrics = '\n'.join(lines)
    
    return lyrics

def process_audio(audio_file):
    """Main function to process audio file, classify genre, and generate lyrics."""
    if audio_file is None:
        return "Please upload an audio file.", None, None
    
    try:
        # Extract audio features
        audio_data = extract_audio_features(audio_file)
        
        # First check if it's music
        try:
            is_music, ast_results = detect_music(audio_data)
        except Exception as e:
            print(f"Error in music detection: {str(e)}")
            return f"Error in music detection: {str(e)}", None, []
            
        if not is_music:
            return "The uploaded audio does not appear to be music. Please upload a music file.", None, ast_results
        
        # Classify genre
        try:
            top_genres = classify_genre(audio_data)
            # Format genre results using utility function
            genre_results = format_genre_results(top_genres)
        except Exception as e:
            print(f"Error in genre classification: {str(e)}")
            return f"Error in genre classification: {str(e)}", None, ast_results
        
        # Analyze music emotions and themes
        try:
            emotion_results = music_analyzer.analyze_music(audio_file)
        except Exception as e:
            print(f"Error in emotion analysis: {str(e)}")
            # Continue even if emotion analysis fails
            emotion_results = {
                "emotion_analysis": {"primary_emotion": "Unknown"},
                "theme_analysis": {"primary_theme": "Unknown"},
                "rhythm_analysis": {"tempo": 0},
                "tonal_analysis": {"key": "Unknown", "mode": ""}
            }
        
        # Calculate detailed song structure for better lyrics alignment
        try:
            song_structure = calculate_detailed_song_structure(audio_data)
        except Exception as e:
            print(f"Error analyzing song structure: {str(e)}")
            # Continue with a simpler approach if this fails
            song_structure = None
        
        # Generate lyrics based on top genre, emotion analysis, and song structure
        try:
            primary_genre, _ = top_genres[0]
            lyrics = generate_lyrics(primary_genre, audio_data["duration"], emotion_results, song_structure)
        except Exception as e:
            print(f"Error generating lyrics: {str(e)}")
            lyrics = f"Error generating lyrics: {str(e)}"
        
        return genre_results, lyrics, ast_results
    
    except Exception as e:
        error_msg = f"Error processing audio: {str(e)}"
        print(error_msg)
        return error_msg, None, []

# Create Gradio interface
with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
    gr.Markdown("# Music Genre Classifier & Lyrics Generator")
    gr.Markdown("Upload a music file to classify its genre, analyze its emotions, and generate matching lyrics.")
    
    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(label="Upload Music", type="filepath")
            submit_btn = gr.Button("Analyze & Generate")
        
        with gr.Column():
            genre_output = gr.Textbox(label="Detected Genres", lines=5)
            emotion_output = gr.Textbox(label="Emotion Analysis", lines=5)
            ast_output = gr.Textbox(label="Audio Classification Results (AST)", lines=5)
            lyrics_output = gr.Textbox(label="Generated Lyrics", lines=15)
    
    def display_results(audio_file):
        if audio_file is None:
            return "Please upload an audio file.", "No emotion analysis available.", "No audio classification available.", None
        
        try:
            # Process audio and get genre, lyrics, and AST results
            genre_results, lyrics, ast_results = process_audio(audio_file)
            
            # Check if we got an error message instead of results
            if isinstance(genre_results, str) and genre_results.startswith("Error"):
                return genre_results, "Error in emotion analysis", "Error in audio classification", None
            
            # Format emotion analysis results
            try:
                emotion_results = music_analyzer.analyze_music(audio_file)
                emotion_text = f"Tempo: {emotion_results['summary']['tempo']:.1f} BPM\n"
                emotion_text += f"Key: {emotion_results['summary']['key']} {emotion_results['summary']['mode']}\n"
                emotion_text += f"Primary Emotion: {emotion_results['summary']['primary_emotion']}\n"
                emotion_text += f"Primary Theme: {emotion_results['summary']['primary_theme']}"
                
                # Add detailed song structure information if available
                try:
                    audio_data = extract_audio_features(audio_file)
                    song_structure = calculate_detailed_song_structure(audio_data)
                    
                    emotion_text += "\n\nSong Structure:\n"
                    for section in song_structure["syllables"]:
                        emotion_text += f"- {section['type'].capitalize()}: {section['start']:.1f}s to {section['end']:.1f}s "
                        emotion_text += f"({section['duration']:.1f}s, {section['beat_count']} beats, ~{section['syllable_count']} syllables)\n"
                except Exception as e:
                    print(f"Error displaying song structure: {str(e)}")
                    # Continue without showing structure details
                    
            except Exception as e:
                print(f"Error in emotion analysis: {str(e)}")
                emotion_text = f"Error in emotion analysis: {str(e)}"
            
            # Format AST classification results
            if ast_results and isinstance(ast_results, list):
                ast_text = "Audio Classification Results (AST Model):\n"
                for result in ast_results[:5]:  # Show top 5 results
                    ast_text += f"{result['label']}: {result['score']*100:.2f}%\n"
            else:
                ast_text = "No valid audio classification results available."
            
            return genre_results, emotion_text, ast_text, lyrics
        except Exception as e:
            error_msg = f"Error: {str(e)}"
            print(error_msg)
            return error_msg, "Error in emotion analysis", "Error in audio classification", None
    
    submit_btn.click(
        fn=display_results,
        inputs=[audio_input],
        outputs=[genre_output, emotion_output, ast_output, lyrics_output]
    )
    
    gr.Markdown("### How it works")
    gr.Markdown("""
    1. Upload an audio file of your choice
    2. The system will classify the genre using the dima806/music_genres_classification model
    3. The system will analyze the musical emotion and theme using advanced audio processing
    4. The system will identify the song structure, beats, and timing patterns
    5. Based on the detected genre, emotion, and structure, it will generate lyrics that match the beats, sections, and flow of the music
    6. The lyrics will include appropriate section markings and syllable counts to align with the music
    """)

# Launch the app
demo.launch()