File size: 42,970 Bytes
9e21eef
 
 
 
 
4ddd8f4
 
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e21eef
 
00af04f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
38b696f
4ddd8f4
38b696f
 
9e21eef
38b696f
 
 
4ddd8f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
 
 
 
4ddd8f4
 
 
 
 
38b696f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
 
 
9e21eef
38b696f
 
 
 
 
 
 
 
 
 
4ddd8f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
 
 
 
 
 
 
4ddd8f4
 
38b696f
 
 
 
 
 
 
 
9e21eef
4ddd8f4
38b696f
 
 
 
 
4ddd8f4
38b696f
 
4ddd8f4
 
 
 
 
 
 
38b696f
 
 
4ddd8f4
 
38b696f
 
4ddd8f4
 
 
 
 
db4c558
4ddd8f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db4c558
 
 
 
 
 
 
 
 
38b696f
db4c558
 
 
4ddd8f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e21eef
 
 
 
 
 
 
 
 
4ddd8f4
 
 
 
 
 
 
 
 
9e21eef
 
 
4ddd8f4
9e21eef
 
 
4ddd8f4
9e21eef
 
4ddd8f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
 
 
 
 
 
9e21eef
 
4ddd8f4
 
9e21eef
4ddd8f4
 
 
 
 
9e21eef
4ddd8f4
9e21eef
4ddd8f4
9e21eef
4ddd8f4
9e21eef
4ddd8f4
 
9e21eef
 
38b696f
9e21eef
 
 
 
4af3315
9e21eef
 
 
 
 
 
00af04f
 
 
 
 
 
9e21eef
00af04f
9e21eef
 
00af04f
 
 
 
 
 
 
9e21eef
 
00af04f
 
 
 
 
38b696f
 
 
 
db4c558
 
38b696f
9e21eef
38b696f
 
 
 
 
 
 
 
4ddd8f4
00af04f
 
4ddd8f4
00af04f
 
 
9e21eef
4af3315
9e21eef
 
00af04f
 
 
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
4af3315
9e21eef
 
 
 
4af3315
9e21eef
 
4af3315
 
9e21eef
00af04f
 
 
 
9e21eef
00af04f
 
 
 
 
 
38b696f
 
 
 
 
 
 
 
 
4ddd8f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
 
 
 
00af04f
 
 
9e21eef
4af3315
00af04f
 
 
 
 
 
4af3315
 
9e21eef
00af04f
 
 
9e21eef
 
 
 
4af3315
9e21eef
 
 
 
 
 
 
38b696f
4ddd8f4
 
 
9e21eef
 
 
38b696f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
import os
import io
import gradio as gr
import torch
import numpy as np
import re
import pronouncing  # Add this to requirements.txt for syllable counting
from transformers import (
    AutoModelForAudioClassification,
    AutoFeatureExtractor,
    AutoTokenizer,
    pipeline,
    AutoModelForCausalLM,
    BitsAndBytesConfig
)
from huggingface_hub import login
from utils import (
    load_audio,
    extract_audio_duration,
    extract_mfcc_features,
    calculate_lyrics_length,
    format_genre_results,
    ensure_cuda_availability,
    preprocess_audio_for_model
)
from emotionanalysis import MusicAnalyzer
import librosa

# Login to Hugging Face Hub if token is provided
if "HF_TOKEN" in os.environ:
    login(token=os.environ["HF_TOKEN"])

# Constants
GENRE_MODEL_NAME = "dima806/music_genres_classification"
MUSIC_DETECTION_MODEL = "MIT/ast-finetuned-audioset-10-10-0.4593"
LLM_MODEL_NAME = "meta-llama/Llama-3.1-8B-Instruct"
SAMPLE_RATE = 22050  # Standard sample rate for audio processing

# Check CUDA availability (for informational purposes)
CUDA_AVAILABLE = ensure_cuda_availability()

# Create music detection pipeline
print(f"Loading music detection model: {MUSIC_DETECTION_MODEL}")
try:
    music_detector = pipeline(
        "audio-classification",
        model=MUSIC_DETECTION_MODEL,
        device=0 if CUDA_AVAILABLE else -1
    )
    print("Successfully loaded music detection pipeline")
except Exception as e:
    print(f"Error creating music detection pipeline: {str(e)}")
    # Fallback to manual loading
    try:
        music_processor = AutoFeatureExtractor.from_pretrained(MUSIC_DETECTION_MODEL)
        music_model = AutoModelForAudioClassification.from_pretrained(MUSIC_DETECTION_MODEL)
        print("Successfully loaded music detection model and feature extractor")
    except Exception as e2:
        print(f"Error loading music detection model components: {str(e2)}")
        raise RuntimeError(f"Could not load music detection model: {str(e2)}")

# Create genre classification pipeline
print(f"Loading audio classification model: {GENRE_MODEL_NAME}")
try:
    genre_classifier = pipeline(
        "audio-classification",
        model=GENRE_MODEL_NAME,
        device=0 if CUDA_AVAILABLE else -1
    )
    print("Successfully loaded audio classification pipeline")
except Exception as e:
    print(f"Error creating pipeline: {str(e)}")
    # Fallback to manual loading
    try:
        genre_processor = AutoFeatureExtractor.from_pretrained(GENRE_MODEL_NAME)
        genre_model = AutoModelForAudioClassification.from_pretrained(GENRE_MODEL_NAME)
        print("Successfully loaded audio classification model and feature extractor")
    except Exception as e2:
        print(f"Error loading model components: {str(e2)}")
        raise RuntimeError(f"Could not load genre classification model: {str(e2)}")

# Load LLM with appropriate quantization for T4 GPU
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.float16,
)

llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
llm_model = AutoModelForCausalLM.from_pretrained(
    LLM_MODEL_NAME,
    device_map="auto",
    quantization_config=bnb_config,
    torch_dtype=torch.float16,
)

# Create LLM pipeline
llm_pipeline = pipeline(
    "text-generation",
    model=llm_model,
    tokenizer=llm_tokenizer,
    max_new_tokens=512,
)

# Initialize music emotion analyzer
music_analyzer = MusicAnalyzer()

# New function: Count syllables in text
def count_syllables(text):
    """Count syllables in a given text using the pronouncing library."""
    words = re.findall(r'\b[a-zA-Z]+\b', text.lower())
    syllable_count = 0
    
    for word in words:
        # Get pronunciations for the word
        pronunciations = pronouncing.phones_for_word(word)
        if pronunciations:
            # Count syllables in the first pronunciation
            syllable_count += pronouncing.syllable_count(pronunciations[0])
        else:
            # Fallback: estimate syllables based on vowel groups
            vowels = "aeiouy"
            count = 0
            prev_is_vowel = False
            
            for char in word:
                is_vowel = char.lower() in vowels
                if is_vowel and not prev_is_vowel:
                    count += 1
                prev_is_vowel = is_vowel
                
            if word.endswith('e'):
                count -= 1
            if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
                count += 1
            if count == 0:
                count = 1
                
            syllable_count += count
    
    return syllable_count

def extract_audio_features(audio_file):
    """Extract audio features from an audio file."""
    try:
        # Load the audio file using utility function
        y, sr = load_audio(audio_file, SAMPLE_RATE)
        
        if y is None or sr is None:
            raise ValueError("Failed to load audio data")
        
        # Get audio duration in seconds
        duration = extract_audio_duration(y, sr)
        
        # Extract MFCCs for genre classification (may not be needed with the pipeline)
        mfccs_mean = extract_mfcc_features(y, sr, n_mfcc=20)
        
        return {
            "features": mfccs_mean,
            "duration": duration,
            "waveform": y,
            "sample_rate": sr,
            "path": audio_file  # Keep path for the pipeline
        }
    except Exception as e:
        print(f"Error extracting audio features: {str(e)}")
        raise ValueError(f"Failed to extract audio features: {str(e)}")

def classify_genre(audio_data):
    """Classify the genre of the audio using the loaded model."""
    try:
        # First attempt: Try using the pipeline if available
        if 'genre_classifier' in globals():
            results = genre_classifier(audio_data["path"])
            # Transform pipeline results to our expected format
            top_genres = [(result["label"], result["score"]) for result in results[:3]]
            return top_genres
        
        # Second attempt: Use manually loaded model components
        elif 'genre_processor' in globals() and 'genre_model' in globals():
            # Process audio input with feature extractor
            inputs = genre_processor(
                audio_data["waveform"], 
                sampling_rate=audio_data["sample_rate"], 
                return_tensors="pt"
            )
            
            with torch.no_grad():
                outputs = genre_model(**inputs)
                predictions = outputs.logits.softmax(dim=-1)
            
            # Get the top 3 genres
            values, indices = torch.topk(predictions, 3)
            
            # Map indices to genre labels
            genre_labels = genre_model.config.id2label
            
            top_genres = []
            for i, (value, index) in enumerate(zip(values[0], indices[0])):
                genre = genre_labels[index.item()]
                confidence = value.item()
                top_genres.append((genre, confidence))
            
            return top_genres
        
        else:
            raise ValueError("No genre classification model available")
            
    except Exception as e:
        print(f"Error in genre classification: {str(e)}")
        # Fallback: return a default genre if everything fails
        return [("rock", 1.0)]

def detect_music(audio_data):
    """Detect if the audio is music using the MIT AST model."""
    try:
        # First attempt: Try using the pipeline if available
        if 'music_detector' in globals():
            results = music_detector(audio_data["path"])
            # Look for music-related classes in the results
            music_confidence = 0.0
            for result in results:
                label = result["label"].lower()
                if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
                    music_confidence = max(music_confidence, result["score"])
            return music_confidence >= 0.2, results
        
        # Second attempt: Use manually loaded model components
        elif 'music_processor' in globals() and 'music_model' in globals():
            # Process audio input with feature extractor
            inputs = music_processor(
                audio_data["waveform"], 
                sampling_rate=audio_data["sample_rate"], 
                return_tensors="pt"
            )
            
            with torch.no_grad():
                outputs = music_model(**inputs)
                predictions = outputs.logits.softmax(dim=-1)
            
            # Get the top predictions
            values, indices = torch.topk(predictions, 5)
            
            # Map indices to labels
            labels = music_model.config.id2label
            
            # Check for music-related classes
            music_confidence = 0.0
            results = []
            
            for i, (value, index) in enumerate(zip(values[0], indices[0])):
                label = labels[index.item()].lower()
                score = value.item()
                results.append({"label": label, "score": score})
                
                if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
                    music_confidence = max(music_confidence, score)
            
            return music_confidence >= 0.2, results
            
        else:
            raise ValueError("No music detection model available")
            
    except Exception as e:
        print(f"Error in music detection: {str(e)}")
        return False, []

# Enhanced detect_beats function for better rhythm analysis
def detect_beats(y, sr):
    """Detect beats and create a detailed rhythmic map of the audio."""
    # Get tempo and beat frames
    tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)
    
    # Convert beat frames to time in seconds
    beat_times = librosa.frames_to_time(beat_frames, sr=sr)
    
    # Calculate beat strength to identify strong and weak beats
    onset_env = librosa.onset.onset_strength(y=y, sr=sr)
    beat_strengths = [onset_env[frame] for frame in beat_frames if frame < len(onset_env)]
    
    # If we couldn't get strengths for all beats, use average for missing ones
    if beat_strengths:
        avg_strength = sum(beat_strengths) / len(beat_strengths)
        while len(beat_strengths) < len(beat_times):
            beat_strengths.append(avg_strength)
    else:
        beat_strengths = [1.0] * len(beat_times)
    
    # Calculate time intervals between beats (for rhythm pattern detection)
    intervals = []
    for i in range(1, len(beat_times)):
        intervals.append(beat_times[i] - beat_times[i-1])
    
    # Try to detect time signature based on beat pattern
    time_signature = 4  # Default assumption of 4/4 time
    if len(beat_strengths) > 8:
        strength_pattern = []
        for i in range(0, len(beat_strengths), 2):
            if i+1 < len(beat_strengths):
                ratio = beat_strengths[i] / (beat_strengths[i+1] + 0.0001)
                strength_pattern.append(ratio)
        
        # Check if we have a clear 3/4 pattern (strong-weak-weak)
        if strength_pattern:
            three_pattern = sum(1 for r in strength_pattern if r > 1.2) / len(strength_pattern)
            if three_pattern > 0.6:
                time_signature = 3
    
    # Group beats into phrases
    phrases = []
    current_phrase = []
    
    for i in range(len(beat_times)):
        current_phrase.append(i)
        
        # Look for natural phrase boundaries
        if i < len(beat_times) - 1:
            is_stronger_next = False
            if i < len(beat_strengths) - 1:
                is_stronger_next = beat_strengths[i+1] > beat_strengths[i] * 1.2
            
            is_longer_gap = False
            if i < len(beat_times) - 1 and intervals:
                current_gap = beat_times[i+1] - beat_times[i]
                avg_gap = sum(intervals) / len(intervals)
                is_longer_gap = current_gap > avg_gap * 1.3
            
            if (is_stronger_next or is_longer_gap) and len(current_phrase) >= 2:
                phrases.append(current_phrase)
                current_phrase = []
    
    # Add the last phrase if not empty
    if current_phrase:
        phrases.append(current_phrase)
    
    return {
        "tempo": tempo,
        "beat_frames": beat_frames,
        "beat_times": beat_times,
        "beat_count": len(beat_times),
        "beat_strengths": beat_strengths,
        "intervals": intervals,
        "time_signature": time_signature,
        "phrases": phrases
    }

def detect_sections(y, sr):
    """Detect sections (verse, chorus, etc.) in the audio."""
    # Compute the spectral contrast
    S = np.abs(librosa.stft(y))
    contrast = librosa.feature.spectral_contrast(S=S, sr=sr)
    
    # Compute the chroma features
    chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
    
    # Use a combination of contrast and chroma to find segment boundaries
    # Average over frequency axis to get time series
    contrast_avg = np.mean(contrast, axis=0)
    chroma_avg = np.mean(chroma, axis=0)
    
    # Normalize
    contrast_avg = (contrast_avg - np.mean(contrast_avg)) / np.std(contrast_avg)
    chroma_avg = (chroma_avg - np.mean(chroma_avg)) / np.std(chroma_avg)
    
    # Combine features
    combined = contrast_avg + chroma_avg
    
    # Detect structural boundaries
    bounds = librosa.segment.agglomerative(combined, 3)  # Adjust for typical song structures
    
    # Convert to time in seconds
    bound_times = librosa.frames_to_time(bounds, sr=sr)
    
    # Estimate section types based on position and length
    sections = []
    for i in range(len(bound_times) - 1):
        start = bound_times[i]
        end = bound_times[i+1]
        duration = end - start
        
        # Simple heuristic to label sections
        if i == 0:
            section_type = "intro"
        elif i == len(bound_times) - 2:
            section_type = "outro"
        elif i % 2 == 1:  # Alternating verse/chorus pattern
            section_type = "chorus"
        else:
            section_type = "verse"
            
        # If we have a short section in the middle, it might be a bridge
        if 0 < i < len(bound_times) - 2 and duration < 20:
            section_type = "bridge"
            
        sections.append({
            "type": section_type,
            "start": start,
            "end": end,
            "duration": duration
        })
    
    return sections

# New function: Create flexible syllable templates
def create_flexible_syllable_templates(beats_info):
    """Create syllable templates based purely on beat patterns without assuming song structure."""
    # Get the beat times and strengths
    beat_times = beats_info["beat_times"]
    beat_strengths = beats_info.get("beat_strengths", [1.0] * len(beat_times))
    phrases = beats_info.get("phrases", [])
    
    # If no phrases were detected, create a simple division
    if not phrases:
        # Default to 4-beat phrases
        phrases = []
        for i in range(0, len(beat_times), 4):
            end_idx = min(i + 4, len(beat_times))
            if end_idx - i >= 2:  # Ensure at least 2 beats per phrase
                phrases.append(list(range(i, end_idx)))
    
    # Create syllable templates for each phrase
    syllable_templates = []
    
    for phrase in phrases:
        # Calculate appropriate syllable count for this phrase
        beat_count = len(phrase)
        phrase_strengths = [beat_strengths[i] for i in phrase if i < len(beat_strengths)]
        avg_strength = sum(phrase_strengths) / len(phrase_strengths) if phrase_strengths else 1.0
        
        # Base calculation: 1-2 syllables per beat depending on tempo
        tempo = beats_info.get("tempo", 120)
        if tempo > 120:  # Fast tempo
            syllables_per_beat = 1.0
        elif tempo > 90:  # Medium tempo
            syllables_per_beat = 1.5
        else:  # Slow tempo
            syllables_per_beat = 2.0
            
        # Adjust for beat strength
        syllables_per_beat *= (0.8 + (avg_strength * 0.4))
        
        # Calculate total syllables for the phrase
        phrase_syllables = int(beat_count * syllables_per_beat)
        if phrase_syllables < 2:
            phrase_syllables = 2
            
        syllable_templates.append(str(phrase_syllables))
    
    return "-".join(syllable_templates)

# New function: Analyze flexible structure
def analyze_flexible_structure(audio_data):
    """Analyze music structure without assuming traditional song sections."""
    y = audio_data["waveform"]
    sr = audio_data["sample_rate"]
    
    # Enhanced beat detection
    beats_info = detect_beats(y, sr)
    
    # Identify segments with similar audio features (using MFCC)
    mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
    
    # Use agglomerative clustering to find segment boundaries
    segment_boundaries = librosa.segment.agglomerative(mfcc, 3)
    segment_times = librosa.frames_to_time(segment_boundaries, sr=sr)
    
    # Create segments
    segments = []
    for i in range(len(segment_times)-1):
        start = segment_times[i]
        end = segment_times[i+1]
        
        # Find beats within this segment
        segment_beats = []
        for j, time in enumerate(beats_info["beat_times"]):
            if start <= time < end:
                segment_beats.append(j)
        
        # Create syllable template for this segment
        if segment_beats:
            segment_beats_info = {
                "beat_times": [beats_info["beat_times"][j] for j in segment_beats],
                "tempo": beats_info.get("tempo", 120)
            }
            
            if "beat_strengths" in beats_info:
                segment_beats_info["beat_strengths"] = [
                    beats_info["beat_strengths"][j] for j in segment_beats 
                    if j < len(beats_info["beat_strengths"])
                ]
                
            if "intervals" in beats_info:
                segment_beats_info["intervals"] = beats_info["intervals"]
                
            if "phrases" in beats_info:
                # Filter phrases to include only beats in this segment
                segment_phrases = []
                for phrase in beats_info["phrases"]:
                    segment_phrase = [beat_idx for beat_idx in phrase if beat_idx in segment_beats]
                    if len(segment_phrase) >= 2:
                        segment_phrases.append(segment_phrase)
                        
                segment_beats_info["phrases"] = segment_phrases
            
            syllable_template = create_flexible_syllable_templates(segment_beats_info)
        else:
            syllable_template = "4"  # Default fallback
        
        segments.append({
            "start": start,
            "end": end,
            "duration": end - start,
            "syllable_template": syllable_template
        })
    
    return {
        "beats": beats_info,
        "segments": segments
    }

# Enhanced estimate_syllables_per_section function
def estimate_syllables_per_section(beats_info, sections):
    """Estimate the number of syllables needed for each section based on beats."""
    syllables_per_section = []
    
    for section in sections:
        # Find beats that fall within this section
        section_beats = [
            beat for beat in beats_info["beat_times"] 
            if section["start"] <= beat < section["end"]
        ]
        
        # Calculate syllables based on section type and beat count
        beat_count = len(section_beats)
        
        # Extract beat strengths for this section if available
        section_beat_strengths = []
        if "beat_strengths" in beats_info:
            for i, beat_time in enumerate(beats_info["beat_times"]):
                if section["start"] <= beat_time < section["end"] and i < len(beats_info["beat_strengths"]):
                    section_beat_strengths.append(beats_info["beat_strengths"][i])
        
        # Create a segment-specific beat info structure for template creation
        segment_beats_info = {
            "beat_times": section_beats,
            "tempo": beats_info.get("tempo", 120)
        }
        
        if section_beat_strengths:
            segment_beats_info["beat_strengths"] = section_beat_strengths
            
        if "intervals" in beats_info:
            segment_beats_info["intervals"] = beats_info["intervals"]
            
        # Create a detailed syllable template for this section
        syllable_template = create_flexible_syllable_templates(segment_beats_info)
        
        # Calculate estimated syllable count
        expected_counts = [int(count) for count in syllable_template.split("-")]
        total_syllables = sum(expected_counts)
        
        syllables_per_section.append({
            "type": section["type"],
            "start": section["start"],
            "end": section["end"],
            "duration": section["duration"],
            "beat_count": beat_count,
            "syllable_count": total_syllables,
            "syllable_template": syllable_template
        })
    
    return syllables_per_section

def calculate_detailed_song_structure(audio_data):
    """Calculate detailed song structure for better lyrics generation."""
    y = audio_data["waveform"]
    sr = audio_data["sample_rate"]
    
    # Enhanced beat detection
    beats_info = detect_beats(y, sr)
    
    # Detect sections
    sections = detect_sections(y, sr)
    
    # Create enhanced syllable info per section
    syllables_info = estimate_syllables_per_section(beats_info, sections)
    
    # Get flexible structure analysis as an alternative approach
    try:
        flexible_structure = analyze_flexible_structure(audio_data)
    except Exception as e:
        print(f"Warning: Flexible structure analysis failed: {str(e)}")
        flexible_structure = None
    
    return {
        "beats": beats_info,
        "sections": sections,
        "syllables": syllables_info,
        "flexible_structure": flexible_structure
    }

# New function: Verify syllable counts
def verify_flexible_syllable_counts(lyrics, templates):
    """Verify that the generated lyrics match the required syllable counts."""
    # Split lyrics into lines
    lines = [line.strip() for line in lyrics.split("\n") if line.strip()]
    
    # Check syllable counts for each line
    verification_notes = []
    
    for i, line in enumerate(lines):
        if i >= len(templates):
            break
            
        template = templates[i]
        
        # Handle different template formats
        if isinstance(template, dict) and "syllable_template" in template:
            expected_counts = [int(count) for count in template["syllable_template"].split("-")]
        elif isinstance(template, str):
            expected_counts = [int(count) for count in template.split("-")]
        else:
            continue
        
        # Count actual syllables
        actual_count = count_syllables(line)
        
        # Calculate difference
        total_expected = sum(expected_counts)
        if abs(actual_count - total_expected) > 2:  # Allow small differences
            verification_notes.append(f"Line {i+1}: Expected {total_expected} syllables, got {actual_count}")
    
    # If we found issues, add them as notes at the end of the lyrics
    if verification_notes:
        lyrics += "\n\n[Note: Potential rhythm mismatches in these lines:]\n"
        lyrics += "\n".join(verification_notes)
        lyrics += "\n[You may want to adjust these lines to match the music's rhythm better]"
    
    return lyrics

# Modified generate_lyrics function
def generate_lyrics(genre, duration, emotion_results, song_structure=None):
    """Generate lyrics based on the genre, emotion, and structure analysis."""
    # Extract emotion and theme data from analysis results
    primary_emotion = emotion_results["emotion_analysis"]["primary_emotion"]
    primary_theme = emotion_results["theme_analysis"]["primary_theme"]
    
    # Extract numeric values safely with fallbacks
    try:
        tempo = float(emotion_results["rhythm_analysis"]["tempo"])
    except (KeyError, ValueError, TypeError):
        tempo = 0.0
        
    key = emotion_results["tonal_analysis"]["key"]
    mode = emotion_results["tonal_analysis"]["mode"]
    
    # Format syllable templates for the prompt
    syllable_guidance = ""
    templates_for_verification = []
    
    if song_structure:
        # Try to use flexible structure if available
        if "flexible_structure" in song_structure and song_structure["flexible_structure"]:
            flexible = song_structure["flexible_structure"]
            if "segments" in flexible and flexible["segments"]:
                syllable_guidance = "Follow these exact syllable patterns for each line:\n"
                
                for i, segment in enumerate(flexible["segments"]):
                    if i < 15:  # Limit to 15 lines to keep prompt manageable
                        syllable_guidance += f"Line {i+1}: {segment['syllable_template']} syllables\n"
                        templates_for_verification.append(segment["syllable_template"])
        
        # Fallback to traditional sections if needed
        elif "syllables" in song_structure and song_structure["syllables"]:
            syllable_guidance = "Follow these syllable patterns for each section:\n"
            
            for section in song_structure["syllables"]:
                if "syllable_template" in section:
                    syllable_guidance += f"[{section['type'].capitalize()}]: {section['syllable_template']} syllables per line\n"
                elif "syllable_count" in section:
                    syllable_guidance += f"[{section['type'].capitalize()}]: ~{section['syllable_count']} syllables total\n"
                
                if "syllable_template" in section:
                    templates_for_verification.append(section)
    
    # If we couldn't get specific templates, use general guidance
    if not syllable_guidance:
        syllable_guidance = "Make sure each line has an appropriate syllable count for singing:\n"
        syllable_guidance += "- For faster sections (tempo > 120 BPM): 4-6 syllables per line\n"
        syllable_guidance += "- For medium tempo sections: 6-8 syllables per line\n"
        syllable_guidance += "- For slower sections (tempo < 90 BPM): 8-10 syllables per line\n"
    
    # Add examples of syllable counting
    syllable_guidance += "\nExamples of syllable counting:\n"
    syllable_guidance += "- 'I can see the light' = 4 syllables\n"
    syllable_guidance += "- 'When it fades a-way' = 4 syllables\n"
    syllable_guidance += "- 'The sun is shin-ing bright to-day' = 8 syllables\n"
    syllable_guidance += "- 'I'll be wait-ing for you' = 6 syllables\n"
    
    # Determine if we should use traditional sections or not
    use_sections = True
    if song_structure and "flexible_structure" in song_structure and song_structure["flexible_structure"]:
        # If we have more than 4 segments, it's likely not a traditional song structure
        if "segments" in song_structure["flexible_structure"]:
            segments = song_structure["flexible_structure"]["segments"]
            if len(segments) > 4:
                use_sections = False
    
    # Create enhanced prompt for the LLM
    if use_sections:
        # Traditional approach with sections
        # Calculate appropriate lyrics length and section distribution
        try:
            if song_structure and "beats" in song_structure:
                beats_info = song_structure["beats"]
                tempo = beats_info.get("tempo", 120)
                time_signature = beats_info.get("time_signature", 4)
                lines_structure = calculate_lyrics_length(duration, tempo, time_signature)
                
                # Handle both possible return types
                if isinstance(lines_structure, dict):
                    total_lines = lines_structure["lines_count"]
                    
                    # Extract section line counts if available
                    verse_lines = 0
                    chorus_lines = 0
                    bridge_lines = 0
                    
                    for section in lines_structure["sections"]:
                        if section["type"] == "verse":
                            verse_lines = section["lines"]
                        elif section["type"] == "chorus":
                            chorus_lines = section["lines"]
                        elif section["type"] == "bridge":
                            bridge_lines = section["lines"]
                else:
                    # The function returned just an integer (old behavior)
                    total_lines = lines_structure
                    
                    # Default section distribution based on total lines
                    if total_lines <= 6:
                        verse_lines = 2
                        chorus_lines = 2
                        bridge_lines = 0
                    elif total_lines <= 10:
                        verse_lines = 3
                        chorus_lines = 2
                        bridge_lines = 0
                    else:
                        verse_lines = 3
                        chorus_lines = 2
                        bridge_lines = 2
            else:
                # Fallback to simple calculation
                total_lines = max(4, int(duration / 10))
                
                # Default section distribution
                if total_lines <= 6:
                    verse_lines = 2
                    chorus_lines = 2
                    bridge_lines = 0
                elif total_lines <= 10:
                    verse_lines = 3
                    chorus_lines = 2
                    bridge_lines = 0
                else:
                    verse_lines = 3
                    chorus_lines = 2
                    bridge_lines = 2
        except Exception as e:
            print(f"Error calculating lyrics length: {str(e)}")
            total_lines = max(4, int(duration / 10))
            
            # Default section distribution
            verse_lines = 3
            chorus_lines = 2
            bridge_lines = 0
        
        prompt = f"""
You are a talented songwriter who specializes in {genre} music.
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.

Music analysis has detected the following qualities in the music:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}

IMPORTANT: The lyrics must match the rhythm of the music exactly!
{syllable_guidance}

When writing the lyrics:
1. Count syllables carefully for each line to match the specified pattern
2. Ensure words fall naturally on the beat
3. Place stressed syllables on strong beats
4. Create a coherent theme throughout the lyrics

The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Be approximately {total_lines} lines long
- Follow this structure:
  * Verse: {verse_lines} lines
  * Chorus: {chorus_lines} lines
  * {f'Bridge: {bridge_lines} lines' if bridge_lines > 0 else ''}
- Be completely original
- Match the song duration of {duration:.1f} seconds

Your lyrics:
"""
    else:
        # Flexible approach without traditional sections
        prompt = f"""
You are a talented songwriter who specializes in {genre} music.
Write original lyrics that match the rhythm of a {genre} music segment that is {duration:.1f} seconds long.

Music analysis has detected the following qualities:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}

IMPORTANT: The lyrics must match the rhythm of the music exactly!
{syllable_guidance}

When writing the lyrics:
1. Count syllables carefully for each line to match the specified pattern
2. Ensure words fall naturally on the beat
3. Place stressed syllables on strong beats
4. Create coherent lyrics that would work for this music segment

The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Be completely original
- Maintain a consistent theme throughout
- Match the audio segment duration of {duration:.1f} seconds

DON'T include any section labels like [Verse] or [Chorus] unless specifically instructed.
Instead, write lyrics that flow naturally and match the music's rhythm.

Your lyrics:
"""

    # Generate lyrics using the LLM
    response = llm_pipeline(
        prompt,
        do_sample=True,
        temperature=0.7,
        top_p=0.9,
        repetition_penalty=1.1,
        return_full_text=False
    )
    
    # Extract and clean generated lyrics
    lyrics = response[0]["generated_text"].strip()
    
    # Verify syllable counts if we have templates
    if templates_for_verification:
        lyrics = verify_flexible_syllable_counts(lyrics, templates_for_verification)
    
    # Add section labels if they're not present and we're using the traditional approach
    if use_sections and "Verse" not in lyrics and "Chorus" not in lyrics:
        lines = lyrics.split('\n')
        formatted_lyrics = []
        
        line_count = 0
        for i, line in enumerate(lines):
            if not line.strip():
                formatted_lyrics.append(line)
                continue
                
            if line_count == 0:
                formatted_lyrics.append("[Verse]")
            elif line_count == verse_lines:
                formatted_lyrics.append("\n[Chorus]")
            elif line_count == verse_lines + chorus_lines and bridge_lines > 0:
                formatted_lyrics.append("\n[Bridge]")
                
            formatted_lyrics.append(line)
            line_count += 1
            
        lyrics = '\n'.join(formatted_lyrics)
    
    return lyrics

def process_audio(audio_file):
    """Main function to process audio file, classify genre, and generate lyrics."""
    if audio_file is None:
        return "Please upload an audio file.", None, None
    
    try:
        # Extract audio features
        audio_data = extract_audio_features(audio_file)
        
        # First check if it's music
        try:
            is_music, ast_results = detect_music(audio_data)
        except Exception as e:
            print(f"Error in music detection: {str(e)}")
            return f"Error in music detection: {str(e)}", None, []
            
        if not is_music:
            return "The uploaded audio does not appear to be music. Please upload a music file.", None, ast_results
        
        # Classify genre
        try:
            top_genres = classify_genre(audio_data)
            # Format genre results using utility function
            genre_results = format_genre_results(top_genres)
        except Exception as e:
            print(f"Error in genre classification: {str(e)}")
            return f"Error in genre classification: {str(e)}", None, ast_results
        
        # Analyze music emotions and themes
        try:
            emotion_results = music_analyzer.analyze_music(audio_file)
        except Exception as e:
            print(f"Error in emotion analysis: {str(e)}")
            # Continue even if emotion analysis fails
            emotion_results = {
                "emotion_analysis": {"primary_emotion": "Unknown"},
                "theme_analysis": {"primary_theme": "Unknown"},
                "rhythm_analysis": {"tempo": 0},
                "tonal_analysis": {"key": "Unknown", "mode": ""},
                "summary": {"tempo": 0, "key": "Unknown", "mode": "", "primary_emotion": "Unknown", "primary_theme": "Unknown"}
            }
        
        # Calculate detailed song structure for better lyrics alignment
        try:
            song_structure = calculate_detailed_song_structure(audio_data)
        except Exception as e:
            print(f"Error analyzing song structure: {str(e)}")
            # Continue with a simpler approach if this fails
            song_structure = None
        
        # Generate lyrics based on top genre, emotion analysis, and song structure
        try:
            primary_genre, _ = top_genres[0]
            lyrics = generate_lyrics(primary_genre, audio_data["duration"], emotion_results, song_structure)
        except Exception as e:
            print(f"Error generating lyrics: {str(e)}")
            lyrics = f"Error generating lyrics: {str(e)}"
        
        return genre_results, lyrics, ast_results
    
    except Exception as e:
        error_msg = f"Error processing audio: {str(e)}"
        print(error_msg)
        return error_msg, None, []

# Create Gradio interface
with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
    gr.Markdown("# Music Genre Classifier & Lyrics Generator")
    gr.Markdown("Upload a music file to classify its genre, analyze its emotions, and generate matching lyrics.")
    
    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(label="Upload Music", type="filepath")
            submit_btn = gr.Button("Analyze & Generate")
        
        with gr.Column():
            genre_output = gr.Textbox(label="Detected Genres", lines=5)
            emotion_output = gr.Textbox(label="Emotion Analysis", lines=5)
            ast_output = gr.Textbox(label="Audio Classification Results (AST)", lines=5)
            lyrics_output = gr.Textbox(label="Generated Lyrics", lines=15)
    
    def display_results(audio_file):
        if audio_file is None:
            return "Please upload an audio file.", "No emotion analysis available.", "No audio classification available.", None
        
        try:
            # Process audio and get genre, lyrics, and AST results
            genre_results, lyrics, ast_results = process_audio(audio_file)
            
            # Check if we got an error message instead of results
            if isinstance(genre_results, str) and genre_results.startswith("Error"):
                return genre_results, "Error in emotion analysis", "Error in audio classification", None
            
            # Format emotion analysis results
            try:
                emotion_results = music_analyzer.analyze_music(audio_file)
                emotion_text = f"Tempo: {emotion_results['summary']['tempo']:.1f} BPM\n"
                emotion_text += f"Key: {emotion_results['summary']['key']} {emotion_results['summary']['mode']}\n"
                emotion_text += f"Primary Emotion: {emotion_results['summary']['primary_emotion']}\n"
                emotion_text += f"Primary Theme: {emotion_results['summary']['primary_theme']}"
                
                # Add detailed song structure information if available
                try:
                    audio_data = extract_audio_features(audio_file)
                    song_structure = calculate_detailed_song_structure(audio_data)
                    
                    emotion_text += "\n\nSong Structure:\n"
                    for section in song_structure["syllables"]:
                        emotion_text += f"- {section['type'].capitalize()}: {section['start']:.1f}s to {section['end']:.1f}s "
                        emotion_text += f"({section['duration']:.1f}s, {section['beat_count']} beats, "
                        
                        if "syllable_template" in section:
                            emotion_text += f"template: {section['syllable_template']})\n"
                        else:
                            emotion_text += f"~{section['syllable_count']} syllables)\n"
                            
                    # Add flexible structure info if available
                    if "flexible_structure" in song_structure and song_structure["flexible_structure"]:
                        flexible = song_structure["flexible_structure"]
                        if "segments" in flexible and flexible["segments"]:
                            emotion_text += "\nDetailed Rhythm Analysis:\n"
                            for i, segment in enumerate(flexible["segments"][:5]):  # Show first 5 segments
                                emotion_text += f"- Segment {i+1}: {segment['start']:.1f}s to {segment['end']:.1f}s, "
                                emotion_text += f"pattern: {segment['syllable_template']}\n"
                            
                            if len(flexible["segments"]) > 5:
                                emotion_text += f"  (+ {len(flexible['segments']) - 5} more segments)\n"
                        
                except Exception as e:
                    print(f"Error displaying song structure: {str(e)}")
                    # Continue without showing structure details
                    
            except Exception as e:
                print(f"Error in emotion analysis: {str(e)}")
                emotion_text = f"Error in emotion analysis: {str(e)}"
            
            # Format AST classification results
            if ast_results and isinstance(ast_results, list):
                ast_text = "Audio Classification Results (AST Model):\n"
                for result in ast_results[:5]:  # Show top 5 results
                    ast_text += f"{result['label']}: {result['score']*100:.2f}%\n"
            else:
                ast_text = "No valid audio classification results available."
            
            return genre_results, emotion_text, ast_text, lyrics
        except Exception as e:
            error_msg = f"Error: {str(e)}"
            print(error_msg)
            return error_msg, "Error in emotion analysis", "Error in audio classification", None
    
    submit_btn.click(
        fn=display_results,
        inputs=[audio_input],
        outputs=[genre_output, emotion_output, ast_output, lyrics_output]
    )
    
    gr.Markdown("### How it works")
    gr.Markdown("""
    1. Upload an audio file of your choice
    2. The system will classify the genre using the dima806/music_genres_classification model
    3. The system will analyze the musical emotion and theme using advanced audio processing
    4. The system will identify the song structure, beats, and timing patterns
    5. The system will create syllable templates that precisely match the rhythm of the music
    6. Based on the detected genre, emotion, and syllable templates, it will generate lyrics that align perfectly with the beats
    7. The system verifies syllable counts to ensure the generated lyrics can be sung naturally with the music
    """)

# Launch the app
demo.launch()