File size: 26,588 Bytes
9e21eef 4ddd8f4 8515dc5 9e21eef bddf9c4 9e21eef 8515dc5 38b696f 8515dc5 9e21eef bddf9c4 9e21eef e3108aa 9e21eef e3108aa 9e21eef e3108aa 5b33796 bddf9c4 e3108aa 5b33796 e3108aa 5b33796 e3108aa bddf9c4 5b33796 bddf9c4 5b33796 8515dc5 4ddd8f4 00af04f 5b33796 00af04f 5b33796 00af04f 5b33796 bddf9c4 8515dc5 5b33796 31a885a e3108aa bddf9c4 5b33796 bddf9c4 5b33796 bddf9c4 8515dc5 5b33796 38b696f 5b33796 bddf9c4 5b33796 8515dc5 bddf9c4 8515dc5 bddf9c4 5b33796 8515dc5 bddf9c4 5b33796 31a885a 5b33796 8515dc5 e3108aa 5b33796 8515dc5 5b33796 38b696f 8515dc5 e3108aa 5b33796 8515dc5 e3108aa 5b33796 31a885a e3108aa 31a885a 8515dc5 370bf23 8515dc5 370bf23 8515dc5 370bf23 8515dc5 370bf23 8515dc5 31a885a 8515dc5 4ddd8f4 5b33796 8515dc5 5b33796 651b0cd 5b33796 651b0cd 5b33796 8515dc5 5b33796 8515dc5 5b33796 651b0cd 5b33796 8515dc5 5b33796 31a885a 5b33796 054fb90 5b33796 9e21eef 5b33796 e3108aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
import os
import io
import gradio as gr
import torch
import numpy as np
import re
import pronouncing
import functools
from transformers import (
AutoModelForAudioClassification,
AutoFeatureExtractor,
AutoTokenizer,
pipeline,
AutoModelForCausalLM,
BitsAndBytesConfig
)
from huggingface_hub import login
from utils import (
load_audio,
extract_audio_duration,
extract_mfcc_features,
format_genre_results,
ensure_cuda_availability
)
from emotionanalysis import MusicAnalyzer
import librosa
from beat_analysis import BeatAnalyzer # Import the BeatAnalyzer class
# Initialize beat analyzer
beat_analyzer = BeatAnalyzer()
# Login to Hugging Face Hub if token is provided
if "HF_TOKEN" in os.environ:
login(token=os.environ["HF_TOKEN"])
# Constants
GENRE_MODEL_NAME = "dima806/music_genres_classification"
MUSIC_DETECTION_MODEL = "MIT/ast-finetuned-audioset-10-10-0.4593"
LLM_MODEL_NAME = "Qwen/Qwen3-32B"
SAMPLE_RATE = 22050 # Standard sample rate for audio processing
# Check CUDA availability (for informational purposes)
CUDA_AVAILABLE = ensure_cuda_availability()
# Load models at initialization time
print("Loading genre classification model...")
try:
genre_feature_extractor = AutoFeatureExtractor.from_pretrained(GENRE_MODEL_NAME)
genre_model = AutoModelForAudioClassification.from_pretrained(
GENRE_MODEL_NAME,
device_map="auto" if CUDA_AVAILABLE else None
)
# Create a convenience wrapper function with the same interface as before
def get_genre_model():
return genre_model, genre_feature_extractor
except Exception as e:
print(f"Error loading genre model: {str(e)}")
genre_model = None
genre_feature_extractor = None
# Load LLM and tokenizer at initialization time
print("Loading Qwen LLM model with 4-bit quantization...")
try:
# Configure 4-bit quantization for better performance
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True
)
llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
llm_model = AutoModelForCausalLM.from_pretrained(
LLM_MODEL_NAME,
quantization_config=quantization_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.float16,
use_cache=True
)
except Exception as e:
print(f"Error loading LLM model: {str(e)}")
llm_tokenizer = None
llm_model = None
# Create music analyzer instance
music_analyzer = MusicAnalyzer()
# Process uploaded audio file
def process_audio(audio_file):
if audio_file is None:
return "No audio file provided", None, None, None, None, None, None, None
try:
# Load and analyze audio
y, sr = load_audio(audio_file, sr=SAMPLE_RATE)
# Basic audio information
duration = extract_audio_duration(y, sr)
# Analyze music with MusicAnalyzer
music_analysis = music_analyzer.analyze_music(audio_file)
# Extract time signature from MusicAnalyzer result
time_signature = music_analysis["rhythm_analysis"]["estimated_time_signature"]
# Ensure time signature is one of the supported ones (4/4, 3/4, 2/4, 6/8)
if time_signature not in ["4/4", "3/4", "2/4", "6/8"]:
time_signature = "4/4" # Default to 4/4 if unsupported
music_analysis["rhythm_analysis"]["estimated_time_signature"] = time_signature
# Analyze beat patterns and create lyrics template using MusicAnalyzer's time signature
beat_analysis = beat_analyzer.analyze_beat_pattern(audio_file, time_signature=time_signature)
lyric_templates = beat_analyzer.create_lyric_template(beat_analysis)
# Store these in the music_analysis dict for use in lyrics generation
music_analysis["beat_analysis"] = beat_analysis
music_analysis["lyric_templates"] = lyric_templates
# Extract key information
tempo = music_analysis["rhythm_analysis"]["tempo"]
emotion = music_analysis["emotion_analysis"]["primary_emotion"]
theme = music_analysis["theme_analysis"]["primary_theme"]
# Use genre classification directly instead of pipeline
if genre_model is not None and genre_feature_extractor is not None:
# Resample audio to 16000 Hz for the genre model
y_16k = librosa.resample(y, orig_sr=sr, target_sr=16000)
# Extract features
inputs = genre_feature_extractor(
y_16k,
sampling_rate=16000,
return_tensors="pt"
).to(genre_model.device)
# Classify genre
with torch.no_grad():
outputs = genre_model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=-1)
# Get top genres
values, indices = torch.topk(probs[0], k=5)
top_genres = [(genre_model.config.id2label[idx.item()], val.item()) for val, idx in zip(values, indices)]
else:
# Fallback if model loading failed
top_genres = [("Unknown", 1.0)]
# Format genre results for display
genre_results_text = format_genre_results(top_genres)
primary_genre = top_genres[0][0]
# Generate lyrics using LLM
lyrics = generate_lyrics(music_analysis, primary_genre, duration)
# Create beat/stress/syllable matching analysis
beat_match_analysis = analyze_lyrics_rhythm_match(lyrics, lyric_templates, primary_genre)
# Prepare analysis summary
analysis_summary = f"""
### Music Analysis Results
**Duration:** {duration:.2f} seconds
**Tempo:** {tempo:.1f} BPM
**Time Signature:** {time_signature}
**Key:** {music_analysis["tonal_analysis"]["key"]} {music_analysis["tonal_analysis"]["mode"]}
**Primary Emotion:** {emotion}
**Primary Theme:** {theme}
**Top Genre:** {primary_genre}
{genre_results_text}
"""
# Add beat analysis summary
if lyric_templates:
analysis_summary += f"""
### Beat Analysis
**Total Phrases:** {len(lyric_templates)}
**Average Beats Per Phrase:** {np.mean([t['num_beats'] for t in lyric_templates]):.1f}
**Beat Pattern Examples:**
- Phrase 1: {lyric_templates[0]['stress_pattern'] if lyric_templates else 'N/A'}
- Phrase 2: {lyric_templates[1]['stress_pattern'] if len(lyric_templates) > 1 else 'N/A'}
"""
return analysis_summary, lyrics, tempo, time_signature, emotion, theme, primary_genre, beat_match_analysis
except Exception as e:
error_msg = f"Error processing audio: {str(e)}"
print(error_msg)
return error_msg, None, None, None, None, None, None, None
def generate_lyrics(music_analysis, genre, duration):
try:
# Extract meaningful information for context
tempo = music_analysis["rhythm_analysis"]["tempo"]
key = music_analysis["tonal_analysis"]["key"]
mode = music_analysis["tonal_analysis"]["mode"]
emotion = music_analysis["emotion_analysis"]["primary_emotion"]
theme = music_analysis["theme_analysis"]["primary_theme"]
# Get beat analysis and templates
lyric_templates = music_analysis.get("lyric_templates", [])
# Verify LLM is loaded
if llm_model is None or llm_tokenizer is None:
return "Error: LLM model not properly loaded"
# If no templates, fall back to original method
if not lyric_templates:
# Simplified prompt
prompt = f"""Write song lyrics for a {genre} song in {key} {mode} with tempo {tempo} BPM. The emotion is {emotion} and theme is {theme}.
ONLY WRITE THE ACTUAL LYRICS. NO EXPLANATIONS OR META-TEXT.
"""
else:
# Create phrase examples
num_phrases = len(lyric_templates)
# Create a more direct prompt with examples
prompt = f"""Write song lyrics for a {genre} song in {key} {mode} with tempo {tempo} BPM. The emotion is {emotion} and theme is {theme}.
I need EXACTLY {num_phrases} lines of lyrics - one line for each musical phrase. Not one more, not one less.
FORMAT:
- Just write {num_phrases} plain text lines
- Each line should be simple song lyrics (no annotations, no numbers, no labeling)
- Don't include any explanations, thinking tags, or meta-commentary
- Don't use any <think> or [thinking] tags
- Don't include [Verse], [Chorus] or section markers
- Don't include line numbers
EXAMPLE OF WHAT I WANT (for a {num_phrases}-line song):
Lost in the shadows of yesterday
Dreams fade away like morning dew
Time slips through fingers like desert sand
Memories echo in empty rooms
(... and so on for exactly {num_phrases} lines)
JUST THE PLAIN LYRICS, EXACTLY {num_phrases} LINES.
"""
# Generate lyrics using the LLM model
messages = [
{"role": "user", "content": prompt}
]
# Apply chat template
text = llm_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize and move to model device
model_inputs = llm_tokenizer([text], return_tensors="pt").to(llm_model.device)
# Generate with optimized parameters
generated_ids = llm_model.generate(
**model_inputs,
max_new_tokens=1024,
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.2,
pad_token_id=llm_tokenizer.eos_token_id
)
# Decode the output
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
lyrics = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
# ULTRA AGGRESSIVE CLEANING - COMPLETELY REVISED
# ------------------------------------------------
# 1. First, look for any standard dividers that might separate thinking from lyrics
divider_patterns = [
r'Here are the lyrics:',
r'Here is my song:',
r'The lyrics:',
r'My lyrics:',
r'Song lyrics:',
r'\*\*\*+',
r'===+',
r'---+',
r'```',
r'Lyrics:'
]
for pattern in divider_patterns:
matches = re.finditer(pattern, lyrics, re.IGNORECASE)
for match in matches:
# Keep only content after the divider
lyrics = lyrics[match.end():].strip()
# 2. Remove thinking tags completely before splitting into lines
lyrics = re.sub(r'<think>.*?</think>', '', lyrics, flags=re.DOTALL)
lyrics = re.sub(r'\[thinking\].*?\[/thinking\]', '', lyrics, flags=re.DOTALL)
lyrics = re.sub(r'<think>', '', lyrics, flags=re.DOTALL)
lyrics = re.sub(r'</think>', '', lyrics, flags=re.DOTALL)
lyrics = re.sub(r'\[thinking\]', '', lyrics, flags=re.DOTALL)
lyrics = re.sub(r'\[/thinking\]', '', lyrics, flags=re.DOTALL)
# 3. Split text into lines for aggressive line-by-line filtering
lines = lyrics.strip().split('\n')
clean_lines = []
# 4. Define comprehensive patterns for non-lyrical content
non_lyric_patterns = [
# Meta-commentary
r'^(note|thinking|thoughts|let me|i will|i am going|i would|i can|i need to|i have to|i should|let\'s|here|now)',
r'^(first|second|third|next|finally|importantly|remember|so|ok|okay|as requested|as asked|considering)',
# Explanations
r'syllable[s]?|phrase|rhythm|beats?|tempo|bpm|instruction|follow|alignment|match|corresponding',
r'verses?|chorus|bridge|section|stanza|part|template|format|pattern|example',
r'requirements?|guidelines?|song structure|stressed|unstressed',
# Technical language
r'generated|output|result|provide|create|write|draft|version',
# Annotations and numbering
r'^line \d+|^\d+[\.\):]|^\[\w+\]|^[\*\-\+] ',
# Questions or analytical statements
r'\?$|analysis|evaluate|review|check|ensure',
# Instruction-like statements
r'make sure|please note|important|notice|pay attention'
]
# 5. Identify which lines are likely actual lyrics vs non-lyrics
for line in lines:
line = line.strip()
# Skip empty lines or lines with just spaces/tabs
if not line or line.isspace():
continue
# Skip lines that match any non-lyric pattern
should_skip = False
for pattern in non_lyric_patterns:
if re.search(pattern, line.lower()):
should_skip = True
break
if should_skip:
continue
# Skip section headers
if (line.startswith('[') and ']' in line) or (line.startswith('(') and ')' in line and len(line) < 20):
continue
# Skip lines that look like annotations (not prose-like)
if ':' in line and not any(word in line.lower() for word in ['like', 'when', 'where', 'how', 'why', 'what']):
if len(line.split(':')[0]) < 15: # Short prefixes followed by colon are likely annotations
continue
# Skip very short lines that aren't likely to be lyrics (unless it's just a few words which could be valid)
if len(line) < 3:
continue
# Skip lines that are numbered or bulleted
if re.match(r'^\d+\.|\(#\d+\)|\d+\)', line):
continue
# Skip markdown-style emphasis or headers
if re.match(r'^#{1,6} |^\*\*|^__', line):
continue
# Skip lines with think tags
if '<think>' in line.lower() or '</think>' in line.lower() or '[thinking]' in line.lower() or '[/thinking]' in line.lower():
continue
# Add this line as it passed all filters
clean_lines.append(line)
# 6. Additional block-level filters for common patterns
# Check beginning of lyrics for common prefixes
if clean_lines and any(clean_lines[0].lower().startswith(prefix) for prefix in
['here are', 'these are', 'below are', 'following are']):
clean_lines = clean_lines[1:] # Skip the first line
# 7. Process blocks of lines to detect explanation blocks
if len(clean_lines) > 3:
# Check for explanation blocks at the beginning
first_three = ' '.join(clean_lines[:3]).lower()
if any(term in first_three for term in ['i will', 'i have created', 'i\'ll provide', 'i\'ll write']):
# This looks like an explanation, skip the first few lines
start_idx = 0
for i, line in enumerate(clean_lines):
if i >= 3 and not any(term in line.lower() for term in ['i will', 'created', 'write', 'provide']):
start_idx = i
break
clean_lines = clean_lines[start_idx:]
# Check for explanation blocks at the end
last_three = ' '.join(clean_lines[-3:]).lower()
if any(term in last_three for term in ['hope this', 'these lyrics', 'as you can see', 'this song', 'i have']):
# This looks like an explanation at the end, truncate
end_idx = len(clean_lines)
for i in range(len(clean_lines) - 1, max(0, len(clean_lines) - 4), -1):
if i < len(clean_lines) and not any(term in clean_lines[i].lower() for term in
['hope', 'these lyrics', 'as you can see', 'this song']):
end_idx = i + 1
break
clean_lines = clean_lines[:end_idx]
# 8. Cleanup - Remove remaining annotations or thinking
for i in range(len(clean_lines)):
# Remove trailing thoughts/annotations
clean_lines[i] = re.sub(r'\s+//.*$', '', clean_lines[i])
clean_lines[i] = re.sub(r'\s+\(.*?\)$', '', clean_lines[i])
# Remove thinking tags completely
clean_lines[i] = re.sub(r'<think>.*?</think>', '', clean_lines[i], flags=re.DOTALL)
clean_lines[i] = re.sub(r'\[thinking\].*?\[/thinking\]', '', clean_lines[i], flags=re.DOTALL)
clean_lines[i] = re.sub(r'<think>', '', clean_lines[i])
clean_lines[i] = re.sub(r'</think>', '', clean_lines[i])
clean_lines[i] = re.sub(r'\[thinking\]', '', clean_lines[i])
clean_lines[i] = re.sub(r'\[/thinking\]', '', clean_lines[i])
# 9. Filter out any remaining empty lines after tag removal
clean_lines = [line for line in clean_lines if line.strip() and not line.isspace()]
# 10. If we have lyric templates, ensure we have the correct number of lines
if lyric_templates:
num_required = len(lyric_templates)
# If we have too many lines, keep just the best ones
if len(clean_lines) > num_required:
# Keep the first num_required lines
clean_lines = clean_lines[:num_required]
# If we don't have enough lines, generate placeholders
while len(clean_lines) < num_required:
placeholder = f"Echoes of {emotion} fill the {genre} night"
if len(clean_lines) > 0:
# Try to make the placeholder somewhat related to previous lines
last_words = [word for line in clean_lines[-1:] for word in line.split() if len(word) > 3]
if last_words:
import random
word = random.choice(last_words)
placeholder = f"{word.capitalize()} whispers through the {emotion} silence"
clean_lines.append(placeholder)
# Assemble final lyrics
final_lyrics = '\n'.join(clean_lines)
# 11. Final sanity check - if we have nothing or garbage, return an error
if not final_lyrics or len(final_lyrics) < 10:
return "The model generated only thinking content but no actual lyrics. Please try again."
return final_lyrics
except Exception as e:
error_msg = f"Error generating lyrics: {str(e)}"
print(error_msg)
return error_msg
def analyze_lyrics_rhythm_match(lyrics, lyric_templates, genre="pop"):
"""Analyze how well the generated lyrics match the beat patterns and syllable requirements"""
if not lyric_templates or not lyrics:
return "No beat templates or lyrics available for analysis."
# Split lyrics into lines
lines = lyrics.strip().split('\n')
lines = [line for line in lines if line.strip()] # Remove empty lines
# Prepare analysis result
result = "### Beat & Syllable Match Analysis\n\n"
result += "| Line | Syllables | Target Range | Match | Stress Pattern |\n"
result += "| ---- | --------- | ------------ | ----- | -------------- |\n"
# Maximum number of lines to analyze (either all lines or all templates)
line_count = min(len(lines), len(lyric_templates))
# Track overall match statistics
total_matches = 0
total_range_matches = 0
total_stress_matches = 0
total_stress_percentage = 0
total_ideal_matches = 0
for i in range(line_count):
line = lines[i]
template = lyric_templates[i]
# Check match between line and template with genre awareness
check_result = beat_analyzer.check_syllable_stress_match(line, template, genre)
# Get match symbols
syllable_match = "β" if check_result["matches_beat_count"] else ("β*" if check_result["within_range"] else "β")
stress_match = "β" if check_result["stress_matches"] else f"{int(check_result['stress_match_percentage']*100)}%"
# Update stats
if check_result["matches_beat_count"]:
total_matches += 1
if check_result["within_range"]:
total_range_matches += 1
if check_result["stress_matches"]:
total_stress_matches += 1
total_stress_percentage += check_result["stress_match_percentage"]
# Track how close we are to ideal count for this genre
if abs(check_result["syllable_count"] - check_result["ideal_syllable_count"]) <= 1:
total_ideal_matches += 1
# Create visual representation of the stress pattern
stress_visual = ""
for char in template['stress_pattern']:
if char == "S":
stress_visual += "X" # Strong
elif char == "M":
stress_visual += "x" # Medium
else:
stress_visual += "." # Weak
# Add line to results table
result += f"| {i+1} | {check_result['syllable_count']} | {check_result['min_expected']}-{check_result['max_expected']} | {syllable_match} | {stress_visual} |\n"
# Add summary statistics
if line_count > 0:
exact_match_rate = (total_matches / line_count) * 100
range_match_rate = (total_range_matches / line_count) * 100
ideal_match_rate = (total_ideal_matches / line_count) * 100
stress_match_rate = (total_stress_matches / line_count) * 100
avg_stress_percentage = (total_stress_percentage / line_count) * 100
result += f"\n**Summary:**\n"
result += f"- Exact syllable match rate: {exact_match_rate:.1f}%\n"
result += f"- Genre-appropriate syllable range match rate: {range_match_rate:.1f}%\n"
result += f"- Ideal genre syllable count match rate: {ideal_match_rate:.1f}%\n"
result += f"- Perfect stress pattern match rate: {stress_match_rate:.1f}%\n"
result += f"- Average stress pattern accuracy: {avg_stress_percentage:.1f}%\n"
result += f"- Overall rhythmic accuracy: {((range_match_rate + avg_stress_percentage) / 2):.1f}%\n"
# Add genre-specific notes
result += f"\n**Genre Notes ({genre}):**\n"
# Add appropriate genre notes based on genre
if genre.lower() == "pop":
result += "- Pop music typically allows 1-3 syllables per beat using melisma and syncopation\n"
result += "- Strong downbeats often align with stressed syllables of important words\n"
elif genre.lower() == "rock":
result += "- Rock music often uses 1-2 syllables per beat with some variation\n"
result += "- Emphasis on strong beats for impact and rhythmic drive\n"
elif genre.lower() in ["hiphop", "rap"]:
result += "- Hip-hop/rap often features 2-5 syllables per beat through rapid delivery\n"
result += "- Complex rhyme patterns and fast delivery create higher syllable density\n"
elif genre.lower() in ["folk", "country"]:
result += "- Folk/country music often stays closer to 1:1 syllable-to-beat ratio\n"
result += "- Narrative focus leads to clearer enunciation of syllables\n"
else:
result += "- This genre typically allows for flexible syllable-to-beat relationships\n"
result += "- Syllable count can vary based on vocal style and song section\n"
return result
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Music Analysis & Lyrics Generator") as demo:
gr.Markdown("# Music Analysis & Lyrics Generator")
gr.Markdown("Upload a music file or record audio to analyze it and generate matching lyrics")
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.Audio(
label="Upload or Record Audio",
type="filepath",
sources=["upload", "microphone"]
)
analyze_btn = gr.Button("Analyze and Generate Lyrics", variant="primary")
with gr.Column(scale=2):
with gr.Tab("Analysis"):
analysis_output = gr.Textbox(label="Music Analysis Results", lines=10)
with gr.Row():
tempo_output = gr.Number(label="Tempo (BPM)")
time_sig_output = gr.Textbox(label="Time Signature")
emotion_output = gr.Textbox(label="Primary Emotion")
theme_output = gr.Textbox(label="Primary Theme")
genre_output = gr.Textbox(label="Primary Genre")
with gr.Tab("Generated Lyrics"):
lyrics_output = gr.Textbox(label="Generated Lyrics", lines=20)
with gr.Tab("Beat Matching"):
beat_match_output = gr.Markdown(label="Beat & Syllable Matching Analysis")
# Set up event handlers
analyze_btn.click(
fn=process_audio,
inputs=[audio_input],
outputs=[analysis_output, lyrics_output, tempo_output, time_sig_output,
emotion_output, theme_output, genre_output, beat_match_output]
)
gr.Markdown("""
## How it works
1. Upload or record a music file
2. The system analyzes tempo, beats, time signature and other musical features
3. It detects emotion, theme, and music genre
4. Using beat patterns and syllable stress analysis, it generates perfectly aligned lyrics
5. Each line of the lyrics is matched to the beat pattern of the corresponding musical phrase
""")
return demo
# Launch the app
demo = create_interface()
if __name__ == "__main__":
demo.launch()
else:
# For Hugging Face Spaces
app = demo |