File size: 20,224 Bytes
8515dc5 3db0204 8515dc5 8c42b47 0a49a17 8c42b47 d104d4e 0a49a17 8515dc5 8c42b47 3db0204 8515dc5 0a49a17 8515dc5 0a49a17 6ac84ae 0a49a17 6ac84ae 0a49a17 6ac84ae 8515dc5 6ac84ae 0a49a17 6ac84ae 8515dc5 6ac84ae 8515dc5 0a49a17 6ac84ae 0a49a17 6ac84ae 8515dc5 6ac84ae 0a49a17 8515dc5 0a49a17 8515dc5 0a49a17 8515dc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import librosa
import numpy as np
import pronouncing
import re
from functools import lru_cache
import string
from nltk.corpus import cmudict
import nltk
try:
nltk.data.find('corpora/cmudict')
except LookupError:
nltk.download('cmudict')
class BeatAnalyzer:
def __init__(self):
# Mapping for standard stress patterns by time signature
# Simplified to only include 4/4, 3/4, and 6/8
self.stress_patterns = {
# Format: Strong (1.0), Medium (0.5), Weak (0.0)
"4/4": [1.0, 0.0, 0.5, 0.0], # Strong, weak, medium, weak
"3/4": [1.0, 0.0, 0.0], # Strong, weak, weak
"6/8": [1.0, 0.0, 0.0, 0.5, 0.0, 0.0] # Strong, weak, weak, medium, weak, weak
}
self.cmudict = None
try:
self.cmudict = cmudict.dict()
except:
pass # Fall back to rule-based counting if cmudict is not available
# Genre-specific syllable-to-beat ratio guidelines
self.genre_syllable_ratios = {
# Supported genres with strong syllable-to-beat patterns
'pop': (0.5, 1.0, 1.5), # Pop - significantly reduced range
'rock': (0.5, 0.9, 1.3), # Rock - reduced for brevity
'country': (0.6, 0.9, 1.2), # Country - simpler syllable patterns
'disco': (0.7, 1.0, 1.3), # Disco - tightened range
'metal': (0.6, 1.0, 1.3), # Metal - reduced upper limit
# Other genres (analysis only, no lyrics generation)
'hiphop': (1.8, 2.5, 3.5), # Hip hop often has many syllables per beat
'rap': (2.0, 3.0, 4.0), # Rap often has very high syllable counts
'folk': (0.8, 1.0, 1.3), # Folk often has close to 1:1 ratio
'jazz': (0.7, 1.0, 1.5), # Jazz can be very flexible
'reggae': (0.7, 1.0, 1.3), # Reggae often emphasizes specific beats
'soul': (0.8, 1.2, 1.6), # Soul music tends to be expressive
'r&b': (1.0, 1.5, 2.0), # R&B can have melisma
'electronic': (0.7, 1.0, 1.5), # Electronic music varies widely
'classical': (0.7, 1.0, 1.4), # Classical can vary by subgenre
'blues': (0.6, 0.8, 1.2), # Blues often extends syllables
'default': (0.6, 1.0, 1.3) # Default for unknown genres - more conservative
}
# List of genres supported for lyrics generation
# These genres have the most predictable and consistent syllable-to-beat relationships,
# making them ideal for our beat-matching algorithm
self.supported_genres = ['pop', 'rock', 'country', 'disco', 'metal']
# Common time signatures and their beat patterns with weights for prior probability
# Simplified to only include 4/4, 3/4, and 6/8
self.common_time_signatures = {
"4/4": {"beats_per_bar": 4, "beat_pattern": [1.0, 0.2, 0.5, 0.2], "weight": 0.55},
"3/4": {"beats_per_bar": 3, "beat_pattern": [1.0, 0.2, 0.3], "weight": 0.30},
"6/8": {"beats_per_bar": 6, "beat_pattern": [1.0, 0.2, 0.3, 0.8, 0.2, 0.3], "weight": 0.15}
}
# Add common accent patterns for different time signatures
self.accent_patterns = {
"4/4": [[1, 0, 0, 0], [1, 0, 2, 0], [1, 0, 2, 0, 3, 0, 2, 0]],
"3/4": [[1, 0, 0], [1, 0, 2]],
"6/8": [[1, 0, 0, 2, 0, 0], [1, 0, 0, 2, 0, 3]]
}
# Expected rhythm density (relative note density per beat) for different time signatures
self.rhythm_density = {
"4/4": [1.0, 0.7, 0.8, 0.6],
"3/4": [1.0, 0.6, 0.7],
"6/8": [1.0, 0.5, 0.4, 0.8, 0.5, 0.4]
}
@lru_cache(maxsize=128)
def count_syllables(self, word):
"""Count syllables in a word using CMU dictionary if available, otherwise use rule-based method."""
word = word.lower().strip()
word = re.sub(r'[^a-z]', '', word) # Remove non-alphabetic characters
if not word:
return 0
# Try using CMUDict first if available
if self.cmudict and word in self.cmudict:
return max([len(list(y for y in x if y[-1].isdigit())) for x in self.cmudict[word]])
# Rule-based syllable counting as fallback
# Modified version from NLTK's implementation
vowels = "aeiouy"
double_vowels = ['aa', 'ae', 'ai', 'ao', 'au', 'ay', 'ea', 'ee', 'ei', 'eo', 'eu', 'ey', 'ia', 'ie', 'ii', 'io', 'iu', 'oa', 'oe', 'oi', 'oo', 'ou', 'oy', 'ua', 'ue', 'ui', 'uo', 'uy']
prev_was_vowel = False
count = 0
final_e = False
if word.endswith('e') and not word.endswith('le'):
final_e = True
for i, char in enumerate(word):
if char in vowels:
# Check if current char and previous char form a dipthong
if prev_was_vowel and i > 0 and (word[i-1:i+1] in double_vowels):
prev_was_vowel = True
continue
if not prev_was_vowel:
count += 1
prev_was_vowel = True
else:
prev_was_vowel = False
# Handle edge cases
if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
count += 1
elif final_e:
count = max(count-1, 1) # Remove last 'e', but ensure at least 1 syllable
elif word.endswith('y') and not prev_was_vowel:
count += 1
# Ensure at least one syllable
return max(count, 1)
def analyze_beat_pattern(self, audio_path, sr=22050, time_signature="4/4"):
"""Analyze beat patterns and stresses in music using the provided time signature."""
# Load audio
y, sr = librosa.load(audio_path, sr=sr)
# Get tempo and beat frames
tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
# Get beat strengths using onset envelope
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
beat_strengths = onset_env[beat_frames]
# Normalize beat strengths
if len(beat_strengths) > 0 and np.max(beat_strengths) > np.min(beat_strengths):
beat_strengths = (beat_strengths - np.min(beat_strengths)) / (np.max(beat_strengths) - np.min(beat_strengths))
# Parse time signature
if '/' in time_signature:
num, denom = map(int, time_signature.split('/'))
else:
num, denom = 4, 4 # Default to 4/4
# Group beats into bars (each bar is one phrase based on time signature)
bars = []
current_bar = []
for i, (time, strength) in enumerate(zip(beat_times, beat_strengths)):
# Determine metrical position and stress
metrical_position = i % num
# Define stress pattern according to time signature
if time_signature == "4/4":
if metrical_position == 0: # First beat (strongest)
stress = "S" # Strong
elif metrical_position == 2: # Third beat (medium)
stress = "M" # Medium
else: # Second and fourth beats (weak)
stress = "W" # Weak
elif time_signature == "3/4":
if metrical_position == 0: # First beat (strongest)
stress = "S" # Strong
else: # Other beats (weak)
stress = "W" # Weak
elif time_signature == "6/8":
if metrical_position == 0: # First beat (strongest)
stress = "S" # Strong
elif metrical_position == 3: # Fourth beat (medium)
stress = "M" # Medium
else: # Other beats (weak)
stress = "W" # Weak
else:
# Default pattern for other time signatures
if metrical_position == 0:
stress = "S"
else:
stress = "W"
# Add beat to current bar
current_bar.append({
'time': time,
'strength': strength,
'stress': stress,
'metrical_position': metrical_position
})
# When we complete a bar, add it to our bars list
if metrical_position == num - 1 or i == len(beat_times) - 1:
if current_bar:
bars.append(current_bar)
current_bar = []
# If there's any remaining beats, add them as a partial bar
if current_bar:
bars.append(current_bar)
# Organize beats into phrases (one phrase = one bar)
phrases = []
for i, bar in enumerate(bars):
phrase_beats = bar
if not phrase_beats:
continue
# Calculate the phrase information
phrase = {
'id': i,
'num_beats': len(phrase_beats),
'beats': phrase_beats,
'stress_pattern': ''.join(beat['stress'] for beat in phrase_beats),
'start_time': phrase_beats[0]['time'],
'end_time': phrase_beats[-1]['time'] + (phrase_beats[-1]['time'] - phrase_beats[-2]['time'] if len(phrase_beats) > 1 else 0.5),
}
phrases.append(phrase)
return {
'tempo': tempo,
'time_signature': time_signature,
'num_beats': len(beat_times),
'beat_times': beat_times.tolist(),
'beat_strengths': beat_strengths.tolist(),
'phrases': phrases
}
def create_lyric_template(self, beat_analysis):
"""Create templates for lyrics based on beat phrases."""
templates = []
if not beat_analysis or 'phrases' not in beat_analysis:
return templates
phrases = beat_analysis['phrases']
for i, phrase in enumerate(phrases):
duration = phrase['end_time'] - phrase['start_time']
template = {
'id': phrase['id'],
'start_time': phrase['start_time'],
'end_time': phrase['end_time'],
'duration': duration,
'num_beats': phrase['num_beats'],
'stress_pattern': phrase['stress_pattern'],
'syllable_guide': self.generate_phrase_guide(phrase)
}
templates.append(template)
return templates
def generate_phrase_guide(self, template, words_per_beat=0.5):
"""Generate a guide for each phrase to help the LLM."""
num_beats = template['num_beats']
stress_pattern = template['stress_pattern']
# Create a visual representation of the stress pattern
# S = Strong stress, M = Medium stress, W = Weak stress
visual_pattern = ""
for i, stress in enumerate(stress_pattern):
if stress == "S":
visual_pattern += "STRONG "
elif stress == "M":
visual_pattern += "medium "
else:
visual_pattern += "weak "
# Estimate number of words based on beats (very rough estimate)
est_words = max(1, int(num_beats * 0.4)) # Reduced from 0.5 to encourage fewer words
# Estimate syllables - use even more conservative ranges
# For 4/4 time signature, we want to encourage shorter phrases
if stress_pattern == "SWMW": # 4/4 time
min_syllables = max(1, int(num_beats * 0.5)) # Reduced from 0.7
max_syllables = min(7, int(num_beats * 1.3)) # Reduced from 1.6 to max 7
else:
min_syllables = max(1, int(num_beats * 0.5)) # Reduced from 0.7
max_syllables = min(7, int(num_beats * 1.2)) # Reduced from 1.5 to max 7
# Store these in the template for future reference
template['min_expected'] = min_syllables
template['max_expected'] = max_syllables
guide = f"~{est_words} words, ~{min_syllables}-{max_syllables} syllables | Pattern: {visual_pattern}"
# Add additional guidance to the template for natural phrasing
template['phrasing_guide'] = "Keep lines SHORT. Break complete thoughts across MULTIPLE LINES."
return guide
def check_syllable_stress_match(self, text, template, genre="pop"):
"""Check if lyrics match the syllable and stress pattern with genre-specific flexibility."""
# Split text into words and count syllables
words = text.split()
syllable_count = sum(self.count_syllables(word) for word in words)
# Get expected syllable count based on number of beats
expected_count = template['num_beats']
# Get syllable-to-beat ratios based on genre
genre_lower = genre.lower()
if genre_lower in self.genre_syllable_ratios:
min_ratio, typical_ratio, max_ratio = self.genre_syllable_ratios[genre_lower]
else:
min_ratio, typical_ratio, max_ratio = self.genre_syllable_ratios['default']
# Calculate flexible min and max syllable expectations based on genre
# Use more conservative ranges to avoid too many syllables
min_expected = max(1, int(expected_count * min_ratio))
max_expected = min(7, int(expected_count * max_ratio))
# For 4/4 time signature, cap the max syllables per line
if template['stress_pattern'] == "SWMW": # 4/4 time
max_expected = min(max_expected, 7) # Cap at 7 syllables max for 4/4
# Record min and max expected in the template for future reference
template['min_expected'] = min_expected
template['max_expected'] = max_expected
# Check if syllable count falls within genre-appropriate range
within_range = min_expected <= syllable_count <= max_expected
# Consider typical ratio - how close are we to the ideal for this genre?
ideal_count = int(expected_count * typical_ratio)
# Ensure ideal count is also within our constrained range
ideal_count = max(min_expected, min(max_expected, ideal_count))
# More lenient approach to determining "ideal"
# Count as ideal if within 1 syllable of the target instead of exact match
close_to_ideal = abs(syllable_count - ideal_count) <= 1
closeness_to_ideal = 1.0 - min(abs(syllable_count - ideal_count) / (max_expected - min_expected + 1), 1.0)
# Get detailed syllable breakdown for stress analysis
word_syllables = []
for word in words:
count = self.count_syllables(word)
word_syllables.append(count)
# Analyze stress pattern match using a more flexible approach
stress_pattern = template['stress_pattern']
# Simple stress matching algorithm (can be improved in future versions)
# We need to map syllables to beats in a more flexible way
syllable_to_beat_mapping = self._map_syllables_to_beats(word_syllables, stress_pattern)
# Calculate stress match score based on alignment of stressed syllables with strong beats
stress_match_percentage = self._calculate_stress_match(words, word_syllables, syllable_to_beat_mapping, stress_pattern)
# Consider a stress match if the percentage is high enough
stress_matches = stress_match_percentage >= 0.6 # Reduced from 0.7 to be more lenient
return {
'syllable_count': syllable_count,
'expected_count': expected_count,
'min_expected': min_expected,
'max_expected': max_expected,
'within_range': within_range,
'matches_beat_count': syllable_count == expected_count, # Exact match (strict)
'close_match': within_range, # Flexible match (based on genre)
'stress_matches': stress_matches,
'stress_match_percentage': stress_match_percentage,
'closeness_to_ideal': closeness_to_ideal,
'word_syllables': word_syllables,
'ideal_syllable_count': ideal_count,
'close_to_ideal': close_to_ideal # New field
}
def _map_syllables_to_beats(self, word_syllables, stress_pattern):
"""Map syllables to beats in a flexible way."""
total_syllables = sum(word_syllables)
total_beats = len(stress_pattern)
# Simple mapping for now - this could be improved with more sophisticated algorithms
if total_syllables <= total_beats:
# Fewer syllables than beats - some beats have no syllables (prolongation)
mapping = []
syllable_index = 0
for beat_index in range(total_beats):
if syllable_index < total_syllables:
mapping.append((syllable_index, beat_index))
syllable_index += 1
return mapping
else:
# More syllables than beats - some beats have multiple syllables (melisma/syncopation)
mapping = []
syllables_per_beat = total_syllables / total_beats
for beat_index in range(total_beats):
start_syllable = int(beat_index * syllables_per_beat)
end_syllable = int((beat_index + 1) * syllables_per_beat)
for syllable_index in range(start_syllable, end_syllable):
if syllable_index < total_syllables:
mapping.append((syllable_index, beat_index))
return mapping
def _calculate_stress_match(self, words, word_syllables, syllable_to_beat_mapping, stress_pattern):
"""Calculate how well syllable stresses match beat stresses."""
# This is a simplified version - real stress analysis would be more complex
# For now, we'll assume the first syllable of each word is stressed
# First, create a flat list of all syllables with their stress (1 = stressed, 0 = unstressed)
syllable_stresses = []
for word, syllable_count in zip(words, word_syllables):
# Simple assumption: first syllable is stressed, rest are unstressed
for i in range(syllable_count):
if i == 0: # First syllable of word
syllable_stresses.append(1) # Stressed
else:
syllable_stresses.append(0) # Unstressed
# Count matches between syllable stress and beat stress
matches = 0
total_mapped = 0
for syllable_index, beat_index in syllable_to_beat_mapping:
if syllable_index < len(syllable_stresses):
syllable_stress = syllable_stresses[syllable_index]
beat_stress = 1 if stress_pattern[beat_index] == 'S' else (0.5 if stress_pattern[beat_index] == 'M' else 0)
# Consider it a match if:
# - Stressed syllable on Strong beat
# - Unstressed syllable on Weak beat
# - Some partial credit for other combinations
if (syllable_stress == 1 and beat_stress > 0.5) or (syllable_stress == 0 and beat_stress < 0.5):
matches += 1
elif syllable_stress == 1 and beat_stress == 0.5: # Stressed syllable on Medium beat
matches += 0.7
total_mapped += 1
if total_mapped == 0:
return 0
return matches / total_mapped |