File size: 41,326 Bytes
9e21eef 5b33796 9e21eef 5b33796 9e21eef 5b33796 3db0204 5b33796 8515dc5 5b33796 3db0204 5b33796 8515dc5 5b33796 3db0204 5b33796 9e21eef 5b33796 9e21eef 5b33796 9e21eef 5b33796 9e21eef 5b33796 9e21eef 5b33796 8515dc5 9e21eef 5b33796 3db0204 5b33796 3db0204 5b33796 8515dc5 3db0204 5b33796 8515dc5 5b33796 8515dc5 5b33796 9e21eef 3db0204 5b33796 3db0204 8515dc5 5b33796 9e21eef 5b33796 9e21eef 5b33796 9e21eef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 |
import librosa
import numpy as np
from scipy import signal
from collections import Counter
try:
import matplotlib.pyplot as plt
except ImportError:
plt = None
from scipy.stats import mode
import warnings
warnings.filterwarnings('ignore') # Suppress librosa warnings
class MusicAnalyzer:
def __init__(self):
# Emotion feature mappings - these define characteristics of different emotions
self.emotion_profiles = {
'happy': {'tempo': (100, 180), 'energy': (0.6, 1.0), 'major_mode': True, 'brightness': (0.6, 1.0)},
'sad': {'tempo': (40, 90), 'energy': (0, 0.5), 'major_mode': False, 'brightness': (0, 0.5)},
'calm': {'tempo': (50, 90), 'energy': (0, 0.4), 'major_mode': True, 'brightness': (0.3, 0.6)},
'energetic': {'tempo': (110, 200), 'energy': (0.7, 1.0), 'major_mode': True, 'brightness': (0.5, 0.9)},
'tense': {'tempo': (70, 140), 'energy': (0.5, 0.9), 'major_mode': False, 'brightness': (0.3, 0.7)},
'nostalgic': {'tempo': (60, 100), 'energy': (0.3, 0.7), 'major_mode': None, 'brightness': (0.4, 0.7)}
}
# Theme mappings based on musical features
self.theme_profiles = {
'love': {'emotion': ['happy', 'nostalgic', 'sad'], 'harmony_complexity': (0.3, 0.7)},
'triumph': {'emotion': ['energetic', 'happy'], 'harmony_complexity': (0.4, 0.8)},
'loss': {'emotion': ['sad', 'nostalgic'], 'harmony_complexity': (0.3, 0.7)},
'adventure': {'emotion': ['energetic', 'tense'], 'harmony_complexity': (0.5, 0.9)},
'reflection': {'emotion': ['calm', 'nostalgic'], 'harmony_complexity': (0.4, 0.8)},
'conflict': {'emotion': ['tense', 'energetic'], 'harmony_complexity': (0.6, 1.0)}
}
# Musical key mapping
self.key_names = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
# Common time signatures and their beat patterns with weights for prior probability
# Simplified to only include 4/4, 3/4, and 6/8
self.common_time_signatures = {
"4/4": {"beats_per_bar": 4, "beat_pattern": [1.0, 0.2, 0.5, 0.2], "weight": 0.45},
"3/4": {"beats_per_bar": 3, "beat_pattern": [1.0, 0.2, 0.3], "weight": 0.25},
"6/8": {"beats_per_bar": 6, "beat_pattern": [1.0, 0.2, 0.3, 0.8, 0.2, 0.3], "weight": 0.30}
}
# Add common accent patterns for different time signatures
self.accent_patterns = {
"4/4": [[1, 0, 0, 0], [1, 0, 2, 0], [1, 0, 2, 0, 3, 0, 2, 0]],
"3/4": [[1, 0, 0], [1, 0, 2]],
"6/8": [[1, 0, 0, 2, 0, 0], [1, 0, 0, 2, 0, 3]]
}
# Expected rhythm density (relative note density per beat) for different time signatures
self.rhythm_density = {
"4/4": [1.0, 0.7, 0.8, 0.6],
"3/4": [1.0, 0.6, 0.7],
"6/8": [1.0, 0.5, 0.4, 0.8, 0.5, 0.4]
}
def load_audio(self, file_path, sr=22050, duration=None):
"""Load audio file and return time series and sample rate"""
try:
y, sr = librosa.load(file_path, sr=sr, duration=duration)
return y, sr
except Exception as e:
print(f"Error loading audio file: {e}")
return None, None
def analyze_rhythm(self, y, sr):
"""Analyze rhythm-related features: tempo, beats, time signature"""
# Tempo and beat detection
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
tempo, beat_frames = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr)
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
# Beat intervals and regularity
beat_intervals = np.diff(beat_times) if len(beat_times) > 1 else np.array([0])
beat_regularity = 1.0 / np.std(beat_intervals) if len(beat_intervals) > 0 and np.std(beat_intervals) > 0 else 0
# Rhythm pattern analysis through autocorrelation
ac = librosa.autocorrelate(onset_env, max_size=sr // 2)
ac = librosa.util.normalize(ac, norm=np.inf)
# Advanced time signature detection
time_sig_result = self._detect_time_signature(y, sr)
# Extract results from the time signature detection
estimated_signature = time_sig_result["time_signature"]
time_sig_confidence = time_sig_result["confidence"]
# Compute onset strength to get a measure of rhythm intensity
rhythm_intensity = np.mean(onset_env) / np.max(onset_env) if np.max(onset_env) > 0 else 0
# Rhythm complexity based on variation in onset strength
rhythm_complexity = np.std(onset_env) / np.mean(onset_env) if np.mean(onset_env) > 0 else 0
# Convert numpy arrays to regular Python types for JSON serialization
beat_times_list = [float(t) for t in beat_times.tolist()]
beat_intervals_list = [float(i) for i in beat_intervals.tolist()]
return {
"tempo": float(tempo),
"beat_times": beat_times_list,
"beat_intervals": beat_intervals_list,
"beat_regularity": float(beat_regularity),
"rhythm_intensity": float(rhythm_intensity),
"rhythm_complexity": float(rhythm_complexity),
"estimated_time_signature": estimated_signature,
"time_signature_confidence": float(time_sig_confidence),
"time_signature_candidates": time_sig_result.get("all_candidates", {})
}
def _detect_time_signature(self, y, sr):
"""
Multi-method approach to time signature detection
Args:
y: Audio signal
sr: Sample rate
Returns:
dict with detected time signature and confidence
"""
# 1. Compute onset envelope and beat positions
onset_env = librosa.onset.onset_strength(y=y, sr=sr, hop_length=512)
# Get tempo and beat frames
tempo, beat_frames = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr)
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
# Return default if not enough beats detected
if len(beat_times) < 8:
return {"time_signature": "4/4", "confidence": 0.5}
# 2. Extract beat strengths and normalize
beat_strengths = self._get_beat_strengths(y, sr, beat_times, onset_env)
# 3. Compute various time signature features using different methods
results = {}
# Method 1: Beat pattern autocorrelation
autocorr_result = self._detect_by_autocorrelation(onset_env, sr)
results["autocorrelation"] = autocorr_result
# Method 2: Beat strength pattern matching
pattern_result = self._detect_by_pattern_matching(beat_strengths)
results["pattern_matching"] = pattern_result
# Method 3: Spectral rhythmic analysis
spectral_result = self._detect_by_spectral_analysis(onset_env, sr)
results["spectral"] = spectral_result
# Method 4: Note density analysis
density_result = self._detect_by_note_density(y, sr, beat_times)
results["note_density"] = density_result
# Method 5: Tempo-based estimation
tempo_result = self._estimate_from_tempo(tempo)
results["tempo_based"] = tempo_result
# 4. Combine results with weighted voting
final_result = self._combine_detection_results(results, tempo)
return final_result
def _get_beat_strengths(self, y, sr, beat_times, onset_env):
"""Extract normalized strengths at beat positions"""
# Convert beat times to frames
beat_frames = librosa.time_to_frames(beat_times, sr=sr, hop_length=512)
beat_frames = [min(f, len(onset_env)-1) for f in beat_frames]
# Get beat strengths from onset envelope
beat_strengths = np.array([onset_env[f] for f in beat_frames])
# Also look at energy and spectral flux at beat positions
hop_length = 512
frame_length = 2048
# Get energy at each beat
energy = librosa.feature.rms(y=y, frame_length=frame_length, hop_length=hop_length)[0]
beat_energy = np.array([energy[min(f, len(energy)-1)] for f in beat_frames])
# Combine onset strength with energy (weighted average)
beat_strengths = 0.7 * beat_strengths + 0.3 * beat_energy
# Normalize
if np.max(beat_strengths) > 0:
beat_strengths = beat_strengths / np.max(beat_strengths)
return beat_strengths
def _detect_by_autocorrelation(self, onset_env, sr):
"""Detect meter using autocorrelation of onset strength"""
# Calculate autocorrelation of onset envelope
hop_length = 512
ac = librosa.autocorrelate(onset_env, max_size=4 * sr // hop_length)
ac = librosa.util.normalize(ac)
# Find significant peaks in autocorrelation
peaks = signal.find_peaks(ac, height=0.2, distance=sr//(8*hop_length))[0]
if len(peaks) < 2:
return {"time_signature": "4/4", "confidence": 0.4}
# Analyze peak intervals in terms of beats
peak_intervals = np.diff(peaks)
# Convert peaks to time
peak_times = peaks * hop_length / sr
# Analyze for common time signature patterns
time_sig_votes = {}
# Check if peaks match expected bar lengths
for ts, info in self.common_time_signatures.items():
beats_per_bar = info["beats_per_bar"]
# Check how well peaks match this meter
score = 0
for interval in peak_intervals:
# Check if this interval corresponds to this time signature
# Allow some tolerance around the expected value
expected = beats_per_bar * (hop_length / sr) # in seconds
tolerance = 0.25 * expected
if abs(interval * hop_length / sr - expected) < tolerance:
score += 1
if len(peak_intervals) > 0:
time_sig_votes[ts] = score / len(peak_intervals)
# Return most likely time signature
if time_sig_votes:
best_ts = max(time_sig_votes.items(), key=lambda x: x[1])
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
return {"time_signature": "4/4", "confidence": 0.4}
def _detect_by_pattern_matching(self, beat_strengths):
"""Match beat strength patterns against known time signature patterns"""
if len(beat_strengths) < 6:
return {"time_signature": "4/4", "confidence": 0.4}
results = {}
# Try each possible time signature
for ts, info in self.common_time_signatures.items():
beats_per_bar = info["beats_per_bar"]
expected_pattern = info["beat_pattern"]
# Calculate correlation scores for overlapping segments
scores = []
# We need at least one complete pattern
if len(beat_strengths) >= beats_per_bar:
# Try different offsets to find best alignment
for offset in range(min(beats_per_bar, len(beat_strengths) - beats_per_bar + 1)):
# Calculate scores for each complete pattern
pattern_scores = []
for i in range(offset, len(beat_strengths) - beats_per_bar + 1, beats_per_bar):
segment = beat_strengths[i:i+beats_per_bar]
# If expected pattern is longer than segment, truncate it
pattern = expected_pattern[:len(segment)]
# Normalize segment and pattern
if np.std(segment) > 0 and np.std(pattern) > 0:
# Calculate correlation
corr = np.corrcoef(segment, pattern)[0, 1]
if not np.isnan(corr):
pattern_scores.append(corr)
if pattern_scores:
scores.append(np.mean(pattern_scores))
# Use the best score among different offsets
if scores:
confidence = max(scores)
results[ts] = confidence
# Find best match
if results:
best_ts = max(results.items(), key=lambda x: x[1])
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
# Default
return {"time_signature": "4/4", "confidence": 0.5}
def _detect_by_spectral_analysis(self, onset_env, sr):
"""Analyze rhythm in frequency domain"""
# Get rhythm periodicity through Fourier Transform
# Focus on periods corresponding to typical bar lengths (1-8 seconds)
hop_length = 512
# Calculate rhythm periodicity
fft_size = 2**13 # Large enough to give good frequency resolution
S = np.abs(np.fft.rfft(onset_env, n=fft_size))
# Convert frequency to tempo in BPM
freqs = np.fft.rfftfreq(fft_size, d=hop_length/sr)
tempos = 60 * freqs
# Focus on reasonable tempo range (40-240 BPM)
tempo_mask = (tempos >= 40) & (tempos <= 240)
S_tempo = S[tempo_mask]
tempos = tempos[tempo_mask]
# Find peaks in spectrum
peaks = signal.find_peaks(S_tempo, height=np.max(S_tempo)*0.1, distance=5)[0]
if len(peaks) == 0:
return {"time_signature": "4/4", "confidence": 0.4}
# Get peak tempos and strengths
peak_tempos = tempos[peaks]
peak_strengths = S_tempo[peaks]
# Sort by strength
peak_indices = np.argsort(peak_strengths)[::-1]
peak_tempos = peak_tempos[peak_indices]
peak_strengths = peak_strengths[peak_indices]
# Analyze relationships between peaks
# For example, 3/4 typically has peaks at multiples of 3 beats
# 4/4 has peaks at multiples of 4 beats
time_sig_scores = {}
# Check relationships between top peaks
if len(peak_tempos) >= 2:
tempo_ratios = []
for i in range(len(peak_tempos)):
for j in range(i+1, len(peak_tempos)):
if peak_tempos[j] > 0:
ratio = peak_tempos[i] / peak_tempos[j]
tempo_ratios.append(ratio)
# Check for patterns indicative of different time signatures
for ts in self.common_time_signatures:
score = 0
if ts == "4/4" or ts == "6/8":
# Look for ratios close to 4 or 6
for ratio in tempo_ratios:
if abs(ratio - 4) < 0.2 or abs(ratio - 6) < 0.3:
score += 1
# Normalize score
if tempo_ratios:
time_sig_scores[ts] = min(1.0, score / len(tempo_ratios) + 0.4)
# If we have meaningful scores, return best match
if time_sig_scores:
best_ts = max(time_sig_scores.items(), key=lambda x: x[1])
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
# Default fallback
return {"time_signature": "4/4", "confidence": 0.4}
def _detect_by_note_density(self, y, sr, beat_times):
"""Analyze note density patterns between beats"""
if len(beat_times) < 6:
return {"time_signature": "4/4", "confidence": 0.4}
# Extract note onsets (not just beats)
onset_times = librosa.onset.onset_detect(y=y, sr=sr, units='time')
if len(onset_times) < len(beat_times):
return {"time_signature": "4/4", "confidence": 0.4}
# Count onsets between consecutive beats
note_counts = []
for i in range(len(beat_times) - 1):
start = beat_times[i]
end = beat_times[i+1]
# Count onsets in this beat
count = sum(1 for t in onset_times if start <= t < end)
note_counts.append(count)
# Look for repeating patterns in the note counts
time_sig_scores = {}
for ts, info in self.common_time_signatures.items():
beats_per_bar = info["beats_per_bar"]
# Skip if we don't have enough data
if len(note_counts) < beats_per_bar:
continue
# Calculate pattern similarity for this time signature
scores = []
for offset in range(min(beats_per_bar, len(note_counts) - beats_per_bar + 1)):
similarities = []
for i in range(offset, len(note_counts) - beats_per_bar + 1, beats_per_bar):
# Get current bar pattern
pattern = note_counts[i:i+beats_per_bar]
# Compare with expected density pattern
expected = self.rhythm_density.get(ts, [1.0] * beats_per_bar)
expected = expected[:len(pattern)] # Truncate if needed
# Normalize both patterns
if sum(pattern) > 0 and sum(expected) > 0:
pattern_norm = [p/max(1, sum(pattern)) for p in pattern]
expected_norm = [e/sum(expected) for e in expected]
# Calculate similarity (1 - distance)
distance = sum(abs(p - e) for p, e in zip(pattern_norm, expected_norm)) / len(pattern)
similarity = 1 - min(1.0, distance)
similarities.append(similarity)
if similarities:
scores.append(np.mean(similarities))
# Use the best score
if scores:
time_sig_scores[ts] = max(scores)
# Return best match
if time_sig_scores:
best_ts = max(time_sig_scores.items(), key=lambda x: x[1])
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
# Default
return {"time_signature": "4/4", "confidence": 0.4}
def _estimate_from_tempo(self, tempo):
"""Use tempo to help estimate likely time signature"""
# Statistical tendencies: slower tempos often in compound meters (6/8)
# Fast tempos favor 4/4
scores = {}
if tempo < 70:
# Slow tempos favor compound meters
scores = {
"4/4": 0.5,
"3/4": 0.4,
"6/8": 0.7
}
elif 70 <= tempo <= 120:
# Medium tempos favor 4/4, 3/4
scores = {
"4/4": 0.7,
"3/4": 0.6,
"6/8": 0.3
}
else:
# Fast tempos favor 4/4
scores = {
"4/4": 0.8,
"3/4": 0.4,
"6/8": 0.2
}
# Find best match
best_ts = max(scores.items(), key=lambda x: x[1])
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
def _combine_detection_results(self, results, tempo):
"""Combine results from different detection methods"""
# Define weights for different methods
method_weights = {
"autocorrelation": 0.25,
"pattern_matching": 0.30,
"spectral": 0.20,
"note_density": 0.20,
"tempo_based": 0.05
}
# Prior probability (based on frequency in music)
prior_weights = {ts: info["weight"] for ts, info in self.common_time_signatures.items()}
# Combine votes
total_votes = {ts: prior_weights.get(ts, 0.1) for ts in self.common_time_signatures}
for method, result in results.items():
ts = result["time_signature"]
confidence = result["confidence"]
weight = method_weights.get(method, 0.1)
# Add weighted vote
if ts in total_votes:
total_votes[ts] += confidence * weight
else:
total_votes[ts] = confidence * weight
# Special case: disambiguate between 3/4 and 6/8
if "3/4" in total_votes and "6/8" in total_votes:
# If the two are close, use tempo to break tie
if abs(total_votes["3/4"] - total_votes["6/8"]) < 0.1:
if tempo < 100: # Slower tempo favors 6/8
total_votes["6/8"] += 0.1
else: # Faster tempo favors 3/4
total_votes["3/4"] += 0.1
# Get highest scoring time signature
best_ts = max(total_votes.items(), key=lambda x: x[1])
# Calculate confidence score (normalize to 0-1)
confidence = best_ts[1] / (sum(total_votes.values()) + 0.001)
confidence = min(0.95, max(0.4, confidence)) # Bound confidence
return {
"time_signature": best_ts[0],
"confidence": confidence,
"all_candidates": {ts: float(score) for ts, score in total_votes.items()}
}
def _evaluate_beat_pattern(self, beat_strengths, pattern_length):
"""
Evaluate how consistently a specific pattern length fits the beat strengths
Args:
beat_strengths: Array of normalized beat strengths
pattern_length: Length of pattern to evaluate
Returns:
score: How well this pattern length explains the data (0-1)
"""
if len(beat_strengths) < pattern_length * 2:
return 0.0
# Calculate correlation between consecutive patterns
correlations = []
num_full_patterns = len(beat_strengths) // pattern_length
for i in range(num_full_patterns - 1):
pattern1 = beat_strengths[i*pattern_length:(i+1)*pattern_length]
pattern2 = beat_strengths[(i+1)*pattern_length:(i+2)*pattern_length]
# Calculate similarity between consecutive patterns
if len(pattern1) == len(pattern2) and len(pattern1) > 0:
corr = np.corrcoef(pattern1, pattern2)[0, 1]
if not np.isnan(corr):
correlations.append(corr)
# Calculate variance of beat strengths within each position
variance_score = 0
if num_full_patterns >= 2:
position_values = [[] for _ in range(pattern_length)]
for i in range(num_full_patterns):
for pos in range(pattern_length):
idx = i * pattern_length + pos
if idx < len(beat_strengths):
position_values[pos].append(beat_strengths[idx])
# Calculate variance ratio (higher means consistent accent patterns)
between_pos_var = np.var([np.mean(vals) for vals in position_values if vals])
within_pos_var = np.mean([np.var(vals) for vals in position_values if len(vals) > 1])
if within_pos_var > 0:
variance_score = between_pos_var / within_pos_var
variance_score = min(1.0, variance_score / 2.0) # Normalize
# Combine correlation and variance scores
if correlations:
correlation_score = np.mean(correlations)
return 0.7 * correlation_score + 0.3 * variance_score
return 0.5 * variance_score # Lower confidence if we couldn't calculate correlations
def _extract_average_pattern(self, beat_strengths, pattern_length):
"""
Extract the average beat pattern of specified length
Args:
beat_strengths: Array of beat strengths
pattern_length: Length of pattern to extract
Returns:
Average pattern of the specified length
"""
if len(beat_strengths) < pattern_length:
return np.array([])
# Number of complete patterns
num_patterns = len(beat_strengths) // pattern_length
if num_patterns == 0:
return np.array([])
# Reshape to stack patterns and calculate average
patterns = beat_strengths[:num_patterns * pattern_length].reshape((num_patterns, pattern_length))
return np.mean(patterns, axis=0)
def analyze_tonality(self, y, sr):
"""Analyze tonal features: key, mode, harmonic features"""
# Compute chromagram
chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
# Krumhansl-Schmuckler key-finding algorithm (simplified)
# Major and minor profiles from music theory research
major_profile = np.array([6.35, 2.23, 3.48, 2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66, 2.29, 2.88])
minor_profile = np.array([6.33, 2.68, 3.52, 5.38, 2.60, 3.53, 2.54, 4.75, 3.98, 2.69, 3.34, 3.17])
# Calculate the correlation of the chroma with each key profile
chroma_avg = np.mean(chroma, axis=1)
major_corr = np.zeros(12)
minor_corr = np.zeros(12)
for i in range(12):
major_corr[i] = np.corrcoef(np.roll(chroma_avg, i), major_profile)[0, 1]
minor_corr[i] = np.corrcoef(np.roll(chroma_avg, i), minor_profile)[0, 1]
# Find the key with the highest correlation
max_major_idx = np.argmax(major_corr)
max_minor_idx = np.argmax(minor_corr)
# Determine if the piece is in a major or minor key
if major_corr[max_major_idx] > minor_corr[max_minor_idx]:
mode = "major"
key = self.key_names[max_major_idx]
else:
mode = "minor"
key = self.key_names[max_minor_idx]
# Calculate harmony complexity (variability in harmonic content)
harmony_complexity = np.std(chroma) / np.mean(chroma) if np.mean(chroma) > 0 else 0
# Calculate tonal stability (consistency of tonal center)
tonal_stability = 1.0 / (np.std(chroma_avg) + 0.001) # Add small value to avoid division by zero
# Calculate spectral brightness (center of mass of the spectrum)
spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
brightness = np.mean(spectral_centroid) / (sr/2) # Normalize by Nyquist frequency
# Calculate dissonance using spectral contrast
spectral_contrast = librosa.feature.spectral_contrast(y=y, sr=sr)
dissonance = np.mean(spectral_contrast[0]) # Higher values may indicate more dissonance
return {
"key": key,
"mode": mode,
"is_major": mode == "major",
"harmony_complexity": float(harmony_complexity),
"tonal_stability": float(tonal_stability),
"brightness": float(brightness),
"dissonance": float(dissonance)
}
def analyze_energy(self, y, sr):
"""Analyze energy characteristics of the audio"""
# RMS Energy (overall loudness)
rms = librosa.feature.rms(y=y)[0]
# Energy metrics
mean_energy = np.mean(rms)
energy_std = np.std(rms)
energy_dynamic_range = np.max(rms) - np.min(rms) if len(rms) > 0 else 0
# Energy distribution across frequency ranges
spec = np.abs(librosa.stft(y))
# Divide the spectrum into low, mid, and high ranges
freq_bins = spec.shape[0]
low_freq_energy = np.mean(spec[:int(freq_bins*0.2), :])
mid_freq_energy = np.mean(spec[int(freq_bins*0.2):int(freq_bins*0.8), :])
high_freq_energy = np.mean(spec[int(freq_bins*0.8):, :])
# Normalize to create a distribution
total_energy = low_freq_energy + mid_freq_energy + high_freq_energy
if total_energy > 0:
low_freq_ratio = low_freq_energy / total_energy
mid_freq_ratio = mid_freq_energy / total_energy
high_freq_ratio = high_freq_energy / total_energy
else:
low_freq_ratio = mid_freq_ratio = high_freq_ratio = 1/3
return {
"mean_energy": float(mean_energy),
"energy_std": float(energy_std),
"energy_dynamic_range": float(energy_dynamic_range),
"frequency_distribution": {
"low_freq": float(low_freq_ratio),
"mid_freq": float(mid_freq_ratio),
"high_freq": float(high_freq_ratio)
}
}
def analyze_emotion(self, rhythm_data, tonal_data, energy_data):
"""Classify the emotion based on musical features"""
# Extract key features for emotion detection
tempo = rhythm_data["tempo"]
is_major = tonal_data["is_major"]
energy = energy_data["mean_energy"]
brightness = tonal_data["brightness"]
# Calculate scores for each emotion
emotion_scores = {}
for emotion, profile in self.emotion_profiles.items():
score = 0.0
# Tempo contribution (0-1 score)
tempo_range = profile["tempo"]
if tempo_range[0] <= tempo <= tempo_range[1]:
score += 1.0
else:
# Partial score based on distance
distance = min(abs(tempo - tempo_range[0]), abs(tempo - tempo_range[1]))
max_distance = 40 # Maximum distance to consider
score += max(0, 1 - (distance / max_distance))
# Energy contribution (0-1 score)
energy_range = profile["energy"]
if energy_range[0] <= energy <= energy_range[1]:
score += 1.0
else:
# Partial score based on distance
distance = min(abs(energy - energy_range[0]), abs(energy - energy_range[1]))
max_distance = 0.5 # Maximum distance to consider
score += max(0, 1 - (distance / max_distance))
# Mode contribution (0-1 score)
if profile["major_mode"] is not None: # Some emotions don't have strong mode preference
score += 1.0 if profile["major_mode"] == is_major else 0.0
else:
score += 0.5 # Neutral contribution
# Brightness contribution (0-1 score)
brightness_range = profile["brightness"]
if brightness_range[0] <= brightness <= brightness_range[1]:
score += 1.0
else:
# Partial score based on distance
distance = min(abs(brightness - brightness_range[0]), abs(brightness - brightness_range[1]))
max_distance = 0.5 # Maximum distance to consider
score += max(0, 1 - (distance / max_distance))
# Normalize score (0-1 range)
emotion_scores[emotion] = score / 4.0
# Find primary emotion
primary_emotion = max(emotion_scores.items(), key=lambda x: x[1])
# Calculate valence and arousal (dimensional emotion model)
# Mapping different emotions to valence-arousal space
valence_map = {
'happy': 0.8, 'sad': 0.2, 'calm': 0.6,
'energetic': 0.7, 'tense': 0.3, 'nostalgic': 0.5
}
arousal_map = {
'happy': 0.7, 'sad': 0.3, 'calm': 0.2,
'energetic': 0.9, 'tense': 0.8, 'nostalgic': 0.4
}
# Calculate weighted valence and arousal
total_weight = sum(emotion_scores.values())
if total_weight > 0:
valence = sum(score * valence_map[emotion] for emotion, score in emotion_scores.items()) / total_weight
arousal = sum(score * arousal_map[emotion] for emotion, score in emotion_scores.items()) / total_weight
else:
valence = 0.5
arousal = 0.5
return {
"primary_emotion": primary_emotion[0],
"confidence": primary_emotion[1],
"emotion_scores": emotion_scores,
"valence": float(valence), # Pleasure dimension (0-1)
"arousal": float(arousal) # Activity dimension (0-1)
}
def analyze_theme(self, rhythm_data, tonal_data, emotion_data):
"""Infer potential themes based on musical features and emotion"""
# Extract relevant features
primary_emotion = emotion_data["primary_emotion"]
harmony_complexity = tonal_data["harmony_complexity"]
# Calculate theme scores
theme_scores = {}
for theme, profile in self.theme_profiles.items():
score = 0.0
# Emotion contribution
if primary_emotion in profile["emotion"]:
# Emotions listed earlier have stronger connection to the theme
position_weight = 1.0 / (profile["emotion"].index(primary_emotion) + 1)
score += position_weight
# Secondary emotions contribution
secondary_emotions = [e for e, s in emotion_data["emotion_scores"].items()
if s > 0.5 and e != primary_emotion]
for emotion in secondary_emotions:
if emotion in profile["emotion"]:
score += 0.3 # Less weight than primary emotion
# Harmony complexity contribution
complexity_range = profile["harmony_complexity"]
if complexity_range[0] <= harmony_complexity <= complexity_range[1]:
score += 1.0
else:
# Partial score based on distance
distance = min(abs(harmony_complexity - complexity_range[0]),
abs(harmony_complexity - complexity_range[1]))
max_distance = 0.5 # Maximum distance to consider
score += max(0, 1 - (distance / max_distance))
# Normalize score
theme_scores[theme] = min(1.0, score / 2.5)
# Find primary theme
primary_theme = max(theme_scores.items(), key=lambda x: x[1])
# Find secondary themes (scores > 0.5)
secondary_themes = [(theme, score) for theme, score in theme_scores.items()
if score > 0.5 and theme != primary_theme[0]]
secondary_themes.sort(key=lambda x: x[1], reverse=True)
return {
"primary_theme": primary_theme[0],
"confidence": primary_theme[1],
"secondary_themes": [t[0] for t in secondary_themes[:2]], # Top 2 secondary themes
"theme_scores": theme_scores
}
def analyze_music(self, file_path):
"""Main function to perform comprehensive music analysis"""
# Load the audio file
y, sr = self.load_audio(file_path)
if y is None:
return {"error": "Failed to load audio file"}
# Run all analyses
rhythm_data = self.analyze_rhythm(y, sr)
tonal_data = self.analyze_tonality(y, sr)
energy_data = self.analyze_energy(y, sr)
# Higher-level analyses that depend on the basic features
emotion_data = self.analyze_emotion(rhythm_data, tonal_data, energy_data)
theme_data = self.analyze_theme(rhythm_data, tonal_data, emotion_data)
# Convert any remaining numpy values to native Python types
def convert_numpy_to_python(obj):
if isinstance(obj, dict):
return {k: convert_numpy_to_python(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [convert_numpy_to_python(item) for item in obj]
elif isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, np.number):
return float(obj)
else:
return obj
# Ensure all numpy values are converted
rhythm_data = convert_numpy_to_python(rhythm_data)
tonal_data = convert_numpy_to_python(tonal_data)
energy_data = convert_numpy_to_python(energy_data)
emotion_data = convert_numpy_to_python(emotion_data)
theme_data = convert_numpy_to_python(theme_data)
# Combine all results
return {
"file": file_path,
"rhythm_analysis": rhythm_data,
"tonal_analysis": tonal_data,
"energy_analysis": energy_data,
"emotion_analysis": emotion_data,
"theme_analysis": theme_data,
"summary": {
"tempo": float(rhythm_data["tempo"]),
"time_signature": rhythm_data["estimated_time_signature"],
"key": tonal_data["key"],
"mode": tonal_data["mode"],
"primary_emotion": emotion_data["primary_emotion"],
"primary_theme": theme_data["primary_theme"]
}
}
# def visualize_analysis(self, file_path):
# """Create visualizations for the music analysis results"""
# # Check if matplotlib is available
# if plt is None:
# print("Error: matplotlib is not installed. Visualization is not available.")
# return
#
# # Load audio and run analysis
# y, sr = self.load_audio(file_path)
# if y is None:
# print("Error: Failed to load audio file")
# return
#
# results = self.analyze_music(file_path)
#
# # Create visualization
# plt.figure(figsize=(15, 12))
# # Waveform
# plt.subplot(3, 2, 1)
# librosa.display.waveshow(y, sr=sr, alpha=0.6)
# plt.title(f'Waveform (Tempo: {results["rhythm_analysis"]["tempo"]:.1f} BPM)')
# # Spectrogram
# plt.subplot(3, 2, 2)
# D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
# librosa.display.specshow(D, sr=sr, x_axis='time', y_axis='log')
# plt.colorbar(format='%+2.0f dB')
# plt.title(f'Spectrogram (Key: {results["tonal_analysis"]["key"]} {results["tonal_analysis"]["mode"]})')
# # Chromagram
# plt.subplot(3, 2, 3)
# chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
# librosa.display.specshow(chroma, y_axis='chroma', x_axis='time')
# plt.colorbar()
# plt.title('Chromagram')
# # Onset strength and beats
# plt.subplot(3, 2, 4)
# onset_env = librosa.onset.onset_strength(y=y, sr=sr)
# times = librosa.times_like(onset_env, sr=sr)
# plt.plot(times, librosa.util.normalize(onset_env), label='Onset strength')
# plt.vlines(results["rhythm_analysis"]["beat_times"], 0, 1, alpha=0.5, color='r',
# linestyle='--', label='Beats')
# plt.legend()
# plt.title('Rhythm Analysis')
# # Emotion scores
# plt.subplot(3, 2, 5)
# emotions = list(results["emotion_analysis"]["emotion_scores"].keys())
# scores = list(results["emotion_analysis"]["emotion_scores"].values())
# plt.bar(emotions, scores, color='skyblue')
# plt.ylim(0, 1)
# plt.title(f'Emotion Analysis (Primary: {results["emotion_analysis"]["primary_emotion"]})')
# plt.xticks(rotation=45)
# # Theme scores
# plt.subplot(3, 2, 6)
# themes = list(results["theme_analysis"]["theme_scores"].keys())
# scores = list(results["theme_analysis"]["theme_scores"].values())
# plt.bar(themes, scores, color='lightgreen')
# plt.ylim(0, 1)
# plt.title(f'Theme Analysis (Primary: {results["theme_analysis"]["primary_theme"]})')
# plt.xticks(rotation=45)
# plt.tight_layout()
# plt.show()
# Create an instance of the analyzer
analyzer = MusicAnalyzer()
# The following code is for demonstration purposes only
# and will only run if executed directly (not when imported)
if __name__ == "__main__":
# Replace this with a real audio file path when running as a script
demo_file = "path/to/your/audio/file.mp3"
# Analyze the uploaded audio file
results = analyzer.analyze_music(demo_file)
# Print analysis summary
print("\n=== MUSIC ANALYSIS SUMMARY ===")
print(f"Tempo: {results['summary']['tempo']:.1f} BPM")
print(f"Time Signature: {results['summary']['time_signature']}")
print(f"Key: {results['summary']['key']} {results['summary']['mode']}")
print(f"Primary Emotion: {results['summary']['primary_emotion']}")
print(f"Primary Theme: {results['summary']['primary_theme']}")
# Show detailed results (optional)
import json
print("\n=== DETAILED ANALYSIS ===")
print(json.dumps(results, indent=2))
# Visualize the analysis
# analyzer.visualize_analysis(demo_file) |