File size: 20,224 Bytes
8515dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3db0204
8515dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c42b47
0a49a17
 
 
 
 
8c42b47
 
d104d4e
 
 
 
 
 
 
 
 
 
0a49a17
8515dc5
 
8c42b47
 
 
 
 
3db0204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8515dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a49a17
8515dc5
0a49a17
6ac84ae
 
0a49a17
 
6ac84ae
0a49a17
 
6ac84ae
 
 
 
8515dc5
 
6ac84ae
 
0a49a17
6ac84ae
8515dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ac84ae
8515dc5
0a49a17
6ac84ae
 
 
0a49a17
6ac84ae
 
 
 
8515dc5
 
 
 
 
 
6ac84ae
 
 
0a49a17
 
 
 
8515dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a49a17
8515dc5
 
 
 
 
 
 
 
 
 
 
 
 
0a49a17
 
8515dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import librosa
import numpy as np
import pronouncing
import re
from functools import lru_cache
import string
from nltk.corpus import cmudict
import nltk

try:
    nltk.data.find('corpora/cmudict')
except LookupError:
    nltk.download('cmudict')

class BeatAnalyzer:
    def __init__(self):
        # Mapping for standard stress patterns by time signature
        # Simplified to only include 4/4, 3/4, and 6/8
        self.stress_patterns = {
            # Format: Strong (1.0), Medium (0.5), Weak (0.0)
            "4/4": [1.0, 0.0, 0.5, 0.0],  # Strong, weak, medium, weak
            "3/4": [1.0, 0.0, 0.0],       # Strong, weak, weak
            "6/8": [1.0, 0.0, 0.0, 0.5, 0.0, 0.0]   # Strong, weak, weak, medium, weak, weak
        }
        
        self.cmudict = None
        try:
            self.cmudict = cmudict.dict()
        except:
            pass  # Fall back to rule-based counting if cmudict is not available
            
        # Genre-specific syllable-to-beat ratio guidelines
        self.genre_syllable_ratios = {
            # Supported genres with strong syllable-to-beat patterns
            'pop': (0.5, 1.0, 1.5),        # Pop - significantly reduced range
            'rock': (0.5, 0.9, 1.3),       # Rock - reduced for brevity
            'country': (0.6, 0.9, 1.2),    # Country - simpler syllable patterns
            'disco': (0.7, 1.0, 1.3),      # Disco - tightened range
            'metal': (0.6, 1.0, 1.3),      # Metal - reduced upper limit
            
            # Other genres (analysis only, no lyrics generation)
            'hiphop': (1.8, 2.5, 3.5),     # Hip hop often has many syllables per beat
            'rap': (2.0, 3.0, 4.0),        # Rap often has very high syllable counts
            'folk': (0.8, 1.0, 1.3),       # Folk often has close to 1:1 ratio
            'jazz': (0.7, 1.0, 1.5),       # Jazz can be very flexible
            'reggae': (0.7, 1.0, 1.3),     # Reggae often emphasizes specific beats
            'soul': (0.8, 1.2, 1.6),       # Soul music tends to be expressive
            'r&b': (1.0, 1.5, 2.0),        # R&B can have melisma
            'electronic': (0.7, 1.0, 1.5), # Electronic music varies widely
            'classical': (0.7, 1.0, 1.4),  # Classical can vary by subgenre
            'blues': (0.6, 0.8, 1.2),      # Blues often extends syllables
            'default': (0.6, 1.0, 1.3)     # Default for unknown genres - more conservative
        }
        
        # List of genres supported for lyrics generation
        # These genres have the most predictable and consistent syllable-to-beat relationships,
        # making them ideal for our beat-matching algorithm
        self.supported_genres = ['pop', 'rock', 'country', 'disco', 'metal']
        
        # Common time signatures and their beat patterns with weights for prior probability
        # Simplified to only include 4/4, 3/4, and 6/8
        self.common_time_signatures = {
            "4/4": {"beats_per_bar": 4, "beat_pattern": [1.0, 0.2, 0.5, 0.2], "weight": 0.55},
            "3/4": {"beats_per_bar": 3, "beat_pattern": [1.0, 0.2, 0.3], "weight": 0.30},
            "6/8": {"beats_per_bar": 6, "beat_pattern": [1.0, 0.2, 0.3, 0.8, 0.2, 0.3], "weight": 0.15}
        }
        
        # Add common accent patterns for different time signatures
        self.accent_patterns = {
            "4/4": [[1, 0, 0, 0], [1, 0, 2, 0], [1, 0, 2, 0, 3, 0, 2, 0]],
            "3/4": [[1, 0, 0], [1, 0, 2]],
            "6/8": [[1, 0, 0, 2, 0, 0], [1, 0, 0, 2, 0, 3]]
        }
        
        # Expected rhythm density (relative note density per beat) for different time signatures
        self.rhythm_density = {
            "4/4": [1.0, 0.7, 0.8, 0.6],
            "3/4": [1.0, 0.6, 0.7],
            "6/8": [1.0, 0.5, 0.4, 0.8, 0.5, 0.4]
        }
        
    @lru_cache(maxsize=128)
    def count_syllables(self, word):
        """Count syllables in a word using CMU dictionary if available, otherwise use rule-based method."""
        word = word.lower().strip()
        word = re.sub(r'[^a-z]', '', word)  # Remove non-alphabetic characters
        
        if not word:
            return 0
            
        # Try using CMUDict first if available
        if self.cmudict and word in self.cmudict:
            return max([len(list(y for y in x if y[-1].isdigit())) for x in self.cmudict[word]])
            
        # Rule-based syllable counting as fallback
        # Modified version from NLTK's implementation
        vowels = "aeiouy"
        double_vowels = ['aa', 'ae', 'ai', 'ao', 'au', 'ay', 'ea', 'ee', 'ei', 'eo', 'eu', 'ey', 'ia', 'ie', 'ii', 'io', 'iu', 'oa', 'oe', 'oi', 'oo', 'ou', 'oy', 'ua', 'ue', 'ui', 'uo', 'uy']
        prev_was_vowel = False
        count = 0
        final_e = False
        
        if word.endswith('e') and not word.endswith('le'):
            final_e = True
            
        for i, char in enumerate(word):
            if char in vowels:
                # Check if current char and previous char form a dipthong
                if prev_was_vowel and i > 0 and (word[i-1:i+1] in double_vowels):
                    prev_was_vowel = True
                    continue
                
                if not prev_was_vowel:
                    count += 1
                prev_was_vowel = True
            else:
                prev_was_vowel = False
                
        # Handle edge cases
        if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
            count += 1
        elif final_e:
            count = max(count-1, 1)  # Remove last 'e', but ensure at least 1 syllable
        elif word.endswith('y') and not prev_was_vowel:
            count += 1
            
        # Ensure at least one syllable
        return max(count, 1)
    
    def analyze_beat_pattern(self, audio_path, sr=22050, time_signature="4/4"):
        """Analyze beat patterns and stresses in music using the provided time signature."""
        # Load audio
        y, sr = librosa.load(audio_path, sr=sr)
        
        # Get tempo and beat frames
        tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)
        beat_times = librosa.frames_to_time(beat_frames, sr=sr)
        
        # Get beat strengths using onset envelope
        onset_env = librosa.onset.onset_strength(y=y, sr=sr)
        beat_strengths = onset_env[beat_frames]
        
        # Normalize beat strengths
        if len(beat_strengths) > 0 and np.max(beat_strengths) > np.min(beat_strengths):
            beat_strengths = (beat_strengths - np.min(beat_strengths)) / (np.max(beat_strengths) - np.min(beat_strengths))
        
        # Parse time signature
        if '/' in time_signature:
            num, denom = map(int, time_signature.split('/'))
        else:
            num, denom = 4, 4  # Default to 4/4
        
        # Group beats into bars (each bar is one phrase based on time signature)
        bars = []
        current_bar = []
        
        for i, (time, strength) in enumerate(zip(beat_times, beat_strengths)):
            # Determine metrical position and stress
            metrical_position = i % num
            
            # Define stress pattern according to time signature
            if time_signature == "4/4":
                if metrical_position == 0:  # First beat (strongest)
                    stress = "S"  # Strong
                elif metrical_position == 2:  # Third beat (medium)
                    stress = "M"  # Medium
                else:  # Second and fourth beats (weak)
                    stress = "W"  # Weak
            elif time_signature == "3/4":
                if metrical_position == 0:  # First beat (strongest)
                    stress = "S"  # Strong
                else:  # Other beats (weak)
                    stress = "W"  # Weak
            elif time_signature == "6/8":
                if metrical_position == 0:  # First beat (strongest)
                    stress = "S"  # Strong
                elif metrical_position == 3:  # Fourth beat (medium)
                    stress = "M"  # Medium
                else:  # Other beats (weak)
                    stress = "W"  # Weak
            else:
                # Default pattern for other time signatures
                if metrical_position == 0:
                    stress = "S"
                else:
                    stress = "W"
            
            # Add beat to current bar
            current_bar.append({
                'time': time,
                'strength': strength,
                'stress': stress,
                'metrical_position': metrical_position
            })
            
            # When we complete a bar, add it to our bars list
            if metrical_position == num - 1 or i == len(beat_times) - 1:
                if current_bar:
                    bars.append(current_bar)
                    current_bar = []
                    
        # If there's any remaining beats, add them as a partial bar
        if current_bar:
            bars.append(current_bar)
        
        # Organize beats into phrases (one phrase = one bar)
        phrases = []
        
        for i, bar in enumerate(bars):
            phrase_beats = bar
            
            if not phrase_beats:
                continue
                
            # Calculate the phrase information
            phrase = {
                'id': i,
                'num_beats': len(phrase_beats),
                'beats': phrase_beats,
                'stress_pattern': ''.join(beat['stress'] for beat in phrase_beats),
                'start_time': phrase_beats[0]['time'],
                'end_time': phrase_beats[-1]['time'] + (phrase_beats[-1]['time'] - phrase_beats[-2]['time'] if len(phrase_beats) > 1 else 0.5),
            }
            
            phrases.append(phrase)
        
        return {
            'tempo': tempo,
            'time_signature': time_signature,
            'num_beats': len(beat_times),
            'beat_times': beat_times.tolist(),
            'beat_strengths': beat_strengths.tolist(),
            'phrases': phrases
        }
    
    def create_lyric_template(self, beat_analysis):
        """Create templates for lyrics based on beat phrases."""
        templates = []
        
        if not beat_analysis or 'phrases' not in beat_analysis:
            return templates
            
        phrases = beat_analysis['phrases']
        
        for i, phrase in enumerate(phrases):
            duration = phrase['end_time'] - phrase['start_time']
            
            template = {
                'id': phrase['id'],
                'start_time': phrase['start_time'],
                'end_time': phrase['end_time'],
                'duration': duration,
                'num_beats': phrase['num_beats'],
                'stress_pattern': phrase['stress_pattern'],
                'syllable_guide': self.generate_phrase_guide(phrase)
            }
            
            templates.append(template)
            
        return templates
    
    def generate_phrase_guide(self, template, words_per_beat=0.5):
        """Generate a guide for each phrase to help the LLM."""
        num_beats = template['num_beats']
        stress_pattern = template['stress_pattern']
        
        # Create a visual representation of the stress pattern
        # S = Strong stress, M = Medium stress, W = Weak stress
        visual_pattern = ""
        for i, stress in enumerate(stress_pattern):
            if stress == "S":
                visual_pattern += "STRONG "
            elif stress == "M":
                visual_pattern += "medium "
            else:
                visual_pattern += "weak "
        
        # Estimate number of words based on beats (very rough estimate)
        est_words = max(1, int(num_beats * 0.4))  # Reduced from 0.5 to encourage fewer words
        
        # Estimate syllables - use even more conservative ranges
        # For 4/4 time signature, we want to encourage shorter phrases
        if stress_pattern == "SWMW":  # 4/4 time
            min_syllables = max(1, int(num_beats * 0.5))  # Reduced from 0.7
            max_syllables = min(7, int(num_beats * 1.3))  # Reduced from 1.6 to max 7
        else:
            min_syllables = max(1, int(num_beats * 0.5))  # Reduced from 0.7
            max_syllables = min(7, int(num_beats * 1.2))  # Reduced from 1.5 to max 7
        
        # Store these in the template for future reference
        template['min_expected'] = min_syllables
        template['max_expected'] = max_syllables
        
        guide = f"~{est_words} words, ~{min_syllables}-{max_syllables} syllables | Pattern: {visual_pattern}"
        
        # Add additional guidance to the template for natural phrasing
        template['phrasing_guide'] = "Keep lines SHORT. Break complete thoughts across MULTIPLE LINES."
        
        return guide

    def check_syllable_stress_match(self, text, template, genre="pop"):
        """Check if lyrics match the syllable and stress pattern with genre-specific flexibility."""
        # Split text into words and count syllables
        words = text.split()
        syllable_count = sum(self.count_syllables(word) for word in words)
        
        # Get expected syllable count based on number of beats
        expected_count = template['num_beats']
        
        # Get syllable-to-beat ratios based on genre
        genre_lower = genre.lower()
        if genre_lower in self.genre_syllable_ratios:
            min_ratio, typical_ratio, max_ratio = self.genre_syllable_ratios[genre_lower]
        else:
            min_ratio, typical_ratio, max_ratio = self.genre_syllable_ratios['default']
        
        # Calculate flexible min and max syllable expectations based on genre
        # Use more conservative ranges to avoid too many syllables
        min_expected = max(1, int(expected_count * min_ratio))
        max_expected = min(7, int(expected_count * max_ratio))
        
        # For 4/4 time signature, cap the max syllables per line 
        if template['stress_pattern'] == "SWMW":  # 4/4 time
            max_expected = min(max_expected, 7)  # Cap at 7 syllables max for 4/4
            
        # Record min and max expected in the template for future reference
        template['min_expected'] = min_expected
        template['max_expected'] = max_expected
        
        # Check if syllable count falls within genre-appropriate range
        within_range = min_expected <= syllable_count <= max_expected
        
        # Consider typical ratio - how close are we to the ideal for this genre?
        ideal_count = int(expected_count * typical_ratio)
        # Ensure ideal count is also within our constrained range
        ideal_count = max(min_expected, min(max_expected, ideal_count))
        
        # More lenient approach to determining "ideal"
        # Count as ideal if within 1 syllable of the target instead of exact match
        close_to_ideal = abs(syllable_count - ideal_count) <= 1
        
        closeness_to_ideal = 1.0 - min(abs(syllable_count - ideal_count) / (max_expected - min_expected + 1), 1.0)
        
        # Get detailed syllable breakdown for stress analysis
        word_syllables = []
        for word in words:
            count = self.count_syllables(word)
            word_syllables.append(count)
        
        # Analyze stress pattern match using a more flexible approach
        stress_pattern = template['stress_pattern']
        
        # Simple stress matching algorithm (can be improved in future versions)
        # We need to map syllables to beats in a more flexible way
        syllable_to_beat_mapping = self._map_syllables_to_beats(word_syllables, stress_pattern)
        
        # Calculate stress match score based on alignment of stressed syllables with strong beats
        stress_match_percentage = self._calculate_stress_match(words, word_syllables, syllable_to_beat_mapping, stress_pattern)
        
        # Consider a stress match if the percentage is high enough
        stress_matches = stress_match_percentage >= 0.6  # Reduced from 0.7 to be more lenient
        
        return {
            'syllable_count': syllable_count,
            'expected_count': expected_count,
            'min_expected': min_expected,
            'max_expected': max_expected,
            'within_range': within_range,
            'matches_beat_count': syllable_count == expected_count,  # Exact match (strict)
            'close_match': within_range,  # Flexible match (based on genre)
            'stress_matches': stress_matches,
            'stress_match_percentage': stress_match_percentage,
            'closeness_to_ideal': closeness_to_ideal,
            'word_syllables': word_syllables,
            'ideal_syllable_count': ideal_count,
            'close_to_ideal': close_to_ideal  # New field
        }
    
    def _map_syllables_to_beats(self, word_syllables, stress_pattern):
        """Map syllables to beats in a flexible way."""
        total_syllables = sum(word_syllables)
        total_beats = len(stress_pattern)
        
        # Simple mapping for now - this could be improved with more sophisticated algorithms
        if total_syllables <= total_beats:
            # Fewer syllables than beats - some beats have no syllables (prolongation)
            mapping = []
            syllable_index = 0
            for beat_index in range(total_beats):
                if syllable_index < total_syllables:
                    mapping.append((syllable_index, beat_index))
                    syllable_index += 1
            return mapping
        else:
            # More syllables than beats - some beats have multiple syllables (melisma/syncopation)
            mapping = []
            syllables_per_beat = total_syllables / total_beats
            for beat_index in range(total_beats):
                start_syllable = int(beat_index * syllables_per_beat)
                end_syllable = int((beat_index + 1) * syllables_per_beat)
                for syllable_index in range(start_syllable, end_syllable):
                    if syllable_index < total_syllables:
                        mapping.append((syllable_index, beat_index))
            return mapping
    
    def _calculate_stress_match(self, words, word_syllables, syllable_to_beat_mapping, stress_pattern):
        """Calculate how well syllable stresses match beat stresses."""
        # This is a simplified version - real stress analysis would be more complex
        # For now, we'll assume the first syllable of each word is stressed
        
        # First, create a flat list of all syllables with their stress (1 = stressed, 0 = unstressed)
        syllable_stresses = []
        for word, syllable_count in zip(words, word_syllables):
            # Simple assumption: first syllable is stressed, rest are unstressed
            for i in range(syllable_count):
                if i == 0:  # First syllable of word
                    syllable_stresses.append(1)  # Stressed
                else:
                    syllable_stresses.append(0)  # Unstressed
        
        # Count matches between syllable stress and beat stress
        matches = 0
        total_mapped = 0
        
        for syllable_index, beat_index in syllable_to_beat_mapping:
            if syllable_index < len(syllable_stresses):
                syllable_stress = syllable_stresses[syllable_index]
                beat_stress = 1 if stress_pattern[beat_index] == 'S' else (0.5 if stress_pattern[beat_index] == 'M' else 0)
                
                # Consider it a match if:
                # - Stressed syllable on Strong beat
                # - Unstressed syllable on Weak beat
                # - Some partial credit for other combinations
                if (syllable_stress == 1 and beat_stress > 0.5) or (syllable_stress == 0 and beat_stress < 0.5):
                    matches += 1
                elif syllable_stress == 1 and beat_stress == 0.5:  # Stressed syllable on Medium beat
                    matches += 0.7
                
                total_mapped += 1
        
        if total_mapped == 0:
            return 0
            
        return matches / total_mapped