File size: 41,326 Bytes
9e21eef
 
5b33796
 
9e21eef
 
 
 
 
 
 
5b33796
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b33796
 
3db0204
5b33796
8515dc5
5b33796
3db0204
5b33796
 
 
 
 
 
8515dc5
5b33796
 
 
 
 
 
3db0204
5b33796
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b33796
 
 
 
 
 
9e21eef
 
 
 
 
 
 
5b33796
 
 
 
9e21eef
 
5b33796
 
9e21eef
 
 
5b33796
 
 
9e21eef
 
5b33796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8515dc5
9e21eef
5b33796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3db0204
 
5b33796
3db0204
5b33796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8515dc5
3db0204
5b33796
 
 
 
 
 
8515dc5
 
 
5b33796
 
 
 
 
 
8515dc5
5b33796
9e21eef
3db0204
5b33796
3db0204
8515dc5
 
5b33796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b33796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e21eef
 
 
 
 
 
 
 
 
5b33796
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
import librosa
import numpy as np
from scipy import signal
from collections import Counter
try:
    import matplotlib.pyplot as plt
except ImportError:
    plt = None
from scipy.stats import mode
import warnings
warnings.filterwarnings('ignore')  # Suppress librosa warnings

class MusicAnalyzer:
    def __init__(self):
        # Emotion feature mappings - these define characteristics of different emotions
        self.emotion_profiles = {
            'happy': {'tempo': (100, 180), 'energy': (0.6, 1.0), 'major_mode': True, 'brightness': (0.6, 1.0)},
            'sad': {'tempo': (40, 90), 'energy': (0, 0.5), 'major_mode': False, 'brightness': (0, 0.5)},
            'calm': {'tempo': (50, 90), 'energy': (0, 0.4), 'major_mode': True, 'brightness': (0.3, 0.6)},
            'energetic': {'tempo': (110, 200), 'energy': (0.7, 1.0), 'major_mode': True, 'brightness': (0.5, 0.9)},
            'tense': {'tempo': (70, 140), 'energy': (0.5, 0.9), 'major_mode': False, 'brightness': (0.3, 0.7)},
            'nostalgic': {'tempo': (60, 100), 'energy': (0.3, 0.7), 'major_mode': None, 'brightness': (0.4, 0.7)}
        }

        # Theme mappings based on musical features
        self.theme_profiles = {
            'love': {'emotion': ['happy', 'nostalgic', 'sad'], 'harmony_complexity': (0.3, 0.7)},
            'triumph': {'emotion': ['energetic', 'happy'], 'harmony_complexity': (0.4, 0.8)},
            'loss': {'emotion': ['sad', 'nostalgic'], 'harmony_complexity': (0.3, 0.7)},
            'adventure': {'emotion': ['energetic', 'tense'], 'harmony_complexity': (0.5, 0.9)},
            'reflection': {'emotion': ['calm', 'nostalgic'], 'harmony_complexity': (0.4, 0.8)},
            'conflict': {'emotion': ['tense', 'energetic'], 'harmony_complexity': (0.6, 1.0)}
        }

        # Musical key mapping
        self.key_names = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
        
        # Common time signatures and their beat patterns with weights for prior probability
        # Simplified to only include 4/4, 3/4, and 6/8
        self.common_time_signatures = {
            "4/4": {"beats_per_bar": 4, "beat_pattern": [1.0, 0.2, 0.5, 0.2], "weight": 0.45},
            "3/4": {"beats_per_bar": 3, "beat_pattern": [1.0, 0.2, 0.3], "weight": 0.25},
            "6/8": {"beats_per_bar": 6, "beat_pattern": [1.0, 0.2, 0.3, 0.8, 0.2, 0.3], "weight": 0.30}
        }
        
        # Add common accent patterns for different time signatures
        self.accent_patterns = {
            "4/4": [[1, 0, 0, 0], [1, 0, 2, 0], [1, 0, 2, 0, 3, 0, 2, 0]],
            "3/4": [[1, 0, 0], [1, 0, 2]],
            "6/8": [[1, 0, 0, 2, 0, 0], [1, 0, 0, 2, 0, 3]]
        }
        
        # Expected rhythm density (relative note density per beat) for different time signatures
        self.rhythm_density = {
            "4/4": [1.0, 0.7, 0.8, 0.6],
            "3/4": [1.0, 0.6, 0.7],
            "6/8": [1.0, 0.5, 0.4, 0.8, 0.5, 0.4]
        }

    def load_audio(self, file_path, sr=22050, duration=None):
        """Load audio file and return time series and sample rate"""
        try:
            y, sr = librosa.load(file_path, sr=sr, duration=duration)
            return y, sr
        except Exception as e:
            print(f"Error loading audio file: {e}")
            return None, None

    def analyze_rhythm(self, y, sr):
        """Analyze rhythm-related features: tempo, beats, time signature"""
        # Tempo and beat detection
        onset_env = librosa.onset.onset_strength(y=y, sr=sr)
        tempo, beat_frames = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr)
        beat_times = librosa.frames_to_time(beat_frames, sr=sr)

        # Beat intervals and regularity
        beat_intervals = np.diff(beat_times) if len(beat_times) > 1 else np.array([0])
        beat_regularity = 1.0 / np.std(beat_intervals) if len(beat_intervals) > 0 and np.std(beat_intervals) > 0 else 0

        # Rhythm pattern analysis through autocorrelation
        ac = librosa.autocorrelate(onset_env, max_size=sr // 2)
        ac = librosa.util.normalize(ac, norm=np.inf)

        # Advanced time signature detection
        time_sig_result = self._detect_time_signature(y, sr)
        
        # Extract results from the time signature detection
        estimated_signature = time_sig_result["time_signature"]
        time_sig_confidence = time_sig_result["confidence"]

        # Compute onset strength to get a measure of rhythm intensity
        rhythm_intensity = np.mean(onset_env) / np.max(onset_env) if np.max(onset_env) > 0 else 0

        # Rhythm complexity based on variation in onset strength
        rhythm_complexity = np.std(onset_env) / np.mean(onset_env) if np.mean(onset_env) > 0 else 0

        # Convert numpy arrays to regular Python types for JSON serialization
        beat_times_list = [float(t) for t in beat_times.tolist()]
        beat_intervals_list = [float(i) for i in beat_intervals.tolist()]

        return {
            "tempo": float(tempo),
            "beat_times": beat_times_list,
            "beat_intervals": beat_intervals_list,
            "beat_regularity": float(beat_regularity),
            "rhythm_intensity": float(rhythm_intensity),
            "rhythm_complexity": float(rhythm_complexity),
            "estimated_time_signature": estimated_signature,
            "time_signature_confidence": float(time_sig_confidence),
            "time_signature_candidates": time_sig_result.get("all_candidates", {})
        }

    def _detect_time_signature(self, y, sr):
        """
        Multi-method approach to time signature detection
        
        Args:
            y: Audio signal
            sr: Sample rate
        
        Returns:
            dict with detected time signature and confidence
        """
        # 1. Compute onset envelope and beat positions
        onset_env = librosa.onset.onset_strength(y=y, sr=sr, hop_length=512)
        
        # Get tempo and beat frames
        tempo, beat_frames = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr)
        beat_times = librosa.frames_to_time(beat_frames, sr=sr)
        
        # Return default if not enough beats detected
        if len(beat_times) < 8:
            return {"time_signature": "4/4", "confidence": 0.5}
        
        # 2. Extract beat strengths and normalize
        beat_strengths = self._get_beat_strengths(y, sr, beat_times, onset_env)
        
        # 3. Compute various time signature features using different methods
        results = {}
        
        # Method 1: Beat pattern autocorrelation
        autocorr_result = self._detect_by_autocorrelation(onset_env, sr)
        results["autocorrelation"] = autocorr_result
        
        # Method 2: Beat strength pattern matching
        pattern_result = self._detect_by_pattern_matching(beat_strengths)
        results["pattern_matching"] = pattern_result
        
        # Method 3: Spectral rhythmic analysis
        spectral_result = self._detect_by_spectral_analysis(onset_env, sr)
        results["spectral"] = spectral_result
        
        # Method 4: Note density analysis
        density_result = self._detect_by_note_density(y, sr, beat_times)
        results["note_density"] = density_result
        
        # Method 5: Tempo-based estimation
        tempo_result = self._estimate_from_tempo(tempo)
        results["tempo_based"] = tempo_result
        
        # 4. Combine results with weighted voting
        final_result = self._combine_detection_results(results, tempo)
        
        return final_result
    
    def _get_beat_strengths(self, y, sr, beat_times, onset_env):
        """Extract normalized strengths at beat positions"""
        # Convert beat times to frames
        beat_frames = librosa.time_to_frames(beat_times, sr=sr, hop_length=512)
        beat_frames = [min(f, len(onset_env)-1) for f in beat_frames]
        
        # Get beat strengths from onset envelope
        beat_strengths = np.array([onset_env[f] for f in beat_frames])
        
        # Also look at energy and spectral flux at beat positions
        hop_length = 512
        frame_length = 2048
        
        # Get energy at each beat
        energy = librosa.feature.rms(y=y, frame_length=frame_length, hop_length=hop_length)[0]
        beat_energy = np.array([energy[min(f, len(energy)-1)] for f in beat_frames])
        
        # Combine onset strength with energy (weighted average)
        beat_strengths = 0.7 * beat_strengths + 0.3 * beat_energy
        
        # Normalize
        if np.max(beat_strengths) > 0:
            beat_strengths = beat_strengths / np.max(beat_strengths)
            
        return beat_strengths
    
    def _detect_by_autocorrelation(self, onset_env, sr):
        """Detect meter using autocorrelation of onset strength"""
        # Calculate autocorrelation of onset envelope
        hop_length = 512
        ac = librosa.autocorrelate(onset_env, max_size=4 * sr // hop_length)
        ac = librosa.util.normalize(ac)
        
        # Find significant peaks in autocorrelation
        peaks = signal.find_peaks(ac, height=0.2, distance=sr//(8*hop_length))[0]
        
        if len(peaks) < 2:
            return {"time_signature": "4/4", "confidence": 0.4}
            
        # Analyze peak intervals in terms of beats
        peak_intervals = np.diff(peaks)
        
        # Convert peaks to time
        peak_times = peaks * hop_length / sr
        
        # Analyze for common time signature patterns
        time_sig_votes = {}
        
        # Check if peaks match expected bar lengths
        for ts, info in self.common_time_signatures.items():
            beats_per_bar = info["beats_per_bar"]
            
            # Check how well peaks match this meter
            score = 0
            for interval in peak_intervals:
                # Check if this interval corresponds to this time signature
                # Allow some tolerance around the expected value
                expected = beats_per_bar * (hop_length / sr)  # in seconds
                tolerance = 0.25 * expected
                
                if abs(interval * hop_length / sr - expected) < tolerance:
                    score += 1
            
            if len(peak_intervals) > 0:
                time_sig_votes[ts] = score / len(peak_intervals)
        
        # Return most likely time signature
        if time_sig_votes:
            best_ts = max(time_sig_votes.items(), key=lambda x: x[1])
            return {"time_signature": best_ts[0], "confidence": best_ts[1]}
        
        return {"time_signature": "4/4", "confidence": 0.4}
    
    def _detect_by_pattern_matching(self, beat_strengths):
        """Match beat strength patterns against known time signature patterns"""
        if len(beat_strengths) < 6:
            return {"time_signature": "4/4", "confidence": 0.4}
            
        results = {}
        
        # Try each possible time signature
        for ts, info in self.common_time_signatures.items():
            beats_per_bar = info["beats_per_bar"]
            expected_pattern = info["beat_pattern"]
            
            # Calculate correlation scores for overlapping segments
            scores = []
            
            # We need at least one complete pattern
            if len(beat_strengths) >= beats_per_bar:
                # Try different offsets to find best alignment
                for offset in range(min(beats_per_bar, len(beat_strengths) - beats_per_bar + 1)):
                    # Calculate scores for each complete pattern
                    pattern_scores = []
                    
                    for i in range(offset, len(beat_strengths) - beats_per_bar + 1, beats_per_bar):
                        segment = beat_strengths[i:i+beats_per_bar]
                        
                        # If expected pattern is longer than segment, truncate it
                        pattern = expected_pattern[:len(segment)]
                        
                        # Normalize segment and pattern
                        if np.std(segment) > 0 and np.std(pattern) > 0:
                            # Calculate correlation
                            corr = np.corrcoef(segment, pattern)[0, 1]
                            if not np.isnan(corr):
                                pattern_scores.append(corr)
                    
                    if pattern_scores:
                        scores.append(np.mean(pattern_scores))
            
            # Use the best score among different offsets
            if scores:
                confidence = max(scores)
                results[ts] = confidence
        
        # Find best match
        if results:
            best_ts = max(results.items(), key=lambda x: x[1])
            return {"time_signature": best_ts[0], "confidence": best_ts[1]}
        
        # Default
        return {"time_signature": "4/4", "confidence": 0.5}
    
    def _detect_by_spectral_analysis(self, onset_env, sr):
        """Analyze rhythm in frequency domain"""
        # Get rhythm periodicity through Fourier Transform
        # Focus on periods corresponding to typical bar lengths (1-8 seconds)
        hop_length = 512
        
        # Calculate rhythm periodicity
        fft_size = 2**13  # Large enough to give good frequency resolution
        S = np.abs(np.fft.rfft(onset_env, n=fft_size))
        
        # Convert frequency to tempo in BPM
        freqs = np.fft.rfftfreq(fft_size, d=hop_length/sr)
        tempos = 60 * freqs
        
        # Focus on reasonable tempo range (40-240 BPM)
        tempo_mask = (tempos >= 40) & (tempos <= 240)
        S_tempo = S[tempo_mask]
        tempos = tempos[tempo_mask]
        
        # Find peaks in spectrum
        peaks = signal.find_peaks(S_tempo, height=np.max(S_tempo)*0.1, distance=5)[0]

        if len(peaks) == 0:
            return {"time_signature": "4/4", "confidence": 0.4}
            
        # Get peak tempos and strengths
        peak_tempos = tempos[peaks]
        peak_strengths = S_tempo[peaks]
        
        # Sort by strength
        peak_indices = np.argsort(peak_strengths)[::-1]
        peak_tempos = peak_tempos[peak_indices]
        peak_strengths = peak_strengths[peak_indices]
        
        # Analyze relationships between peaks
        # For example, 3/4 typically has peaks at multiples of 3 beats
        # 4/4 has peaks at multiples of 4 beats
        
        time_sig_scores = {}
        
        # Check relationships between top peaks
        if len(peak_tempos) >= 2:
            tempo_ratios = []
            for i in range(len(peak_tempos)):
                for j in range(i+1, len(peak_tempos)):
                    if peak_tempos[j] > 0:
                        ratio = peak_tempos[i] / peak_tempos[j]
                        tempo_ratios.append(ratio)
            
            # Check for patterns indicative of different time signatures
            for ts in self.common_time_signatures:
                score = 0
                
                if ts == "4/4" or ts == "6/8":
                    # Look for ratios close to 4 or 6
                    for ratio in tempo_ratios:
                        if abs(ratio - 4) < 0.2 or abs(ratio - 6) < 0.3:
                            score += 1
                
                # Normalize score
                if tempo_ratios:
                    time_sig_scores[ts] = min(1.0, score / len(tempo_ratios) + 0.4)
        
        # If we have meaningful scores, return best match
        if time_sig_scores:
            best_ts = max(time_sig_scores.items(), key=lambda x: x[1])
            return {"time_signature": best_ts[0], "confidence": best_ts[1]}
        
        # Default fallback
        return {"time_signature": "4/4", "confidence": 0.4}
    
    def _detect_by_note_density(self, y, sr, beat_times):
        """Analyze note density patterns between beats"""
        if len(beat_times) < 6:
            return {"time_signature": "4/4", "confidence": 0.4}
            
        # Extract note onsets (not just beats)
        onset_times = librosa.onset.onset_detect(y=y, sr=sr, units='time')
        
        if len(onset_times) < len(beat_times):
            return {"time_signature": "4/4", "confidence": 0.4}
            
        # Count onsets between consecutive beats
        note_counts = []
        for i in range(len(beat_times) - 1):
            start = beat_times[i]
            end = beat_times[i+1]
            
            # Count onsets in this beat
            count = sum(1 for t in onset_times if start <= t < end)
            note_counts.append(count)
        
        # Look for repeating patterns in the note counts
        time_sig_scores = {}
        
        for ts, info in self.common_time_signatures.items():
            beats_per_bar = info["beats_per_bar"]
            
            # Skip if we don't have enough data
            if len(note_counts) < beats_per_bar:
                continue
                
            # Calculate pattern similarity for this time signature
            scores = []
            
            for offset in range(min(beats_per_bar, len(note_counts) - beats_per_bar + 1)):
                similarities = []
                
                for i in range(offset, len(note_counts) - beats_per_bar + 1, beats_per_bar):
                    # Get current bar pattern
                    pattern = note_counts[i:i+beats_per_bar]
                    
                    # Compare with expected density pattern
                    expected = self.rhythm_density.get(ts, [1.0] * beats_per_bar)
                    expected = expected[:len(pattern)]  # Truncate if needed
                    
                    # Normalize both patterns
                    if sum(pattern) > 0 and sum(expected) > 0:
                        pattern_norm = [p/max(1, sum(pattern)) for p in pattern]
                        expected_norm = [e/sum(expected) for e in expected]
                        
                        # Calculate similarity (1 - distance)
                        distance = sum(abs(p - e) for p, e in zip(pattern_norm, expected_norm)) / len(pattern)
                        similarity = 1 - min(1.0, distance)
                        similarities.append(similarity)
                
                if similarities:
                    scores.append(np.mean(similarities))
            
            # Use the best score
            if scores:
                time_sig_scores[ts] = max(scores)
        
        # Return best match
        if time_sig_scores:
            best_ts = max(time_sig_scores.items(), key=lambda x: x[1])
            return {"time_signature": best_ts[0], "confidence": best_ts[1]}
        
        # Default
        return {"time_signature": "4/4", "confidence": 0.4}
    
    def _estimate_from_tempo(self, tempo):
        """Use tempo to help estimate likely time signature"""
        # Statistical tendencies: slower tempos often in compound meters (6/8)
        # Fast tempos favor 4/4
        
        scores = {}
        
        if tempo < 70:
            # Slow tempos favor compound meters
            scores = {
                "4/4": 0.5,
                "3/4": 0.4,
                "6/8": 0.7
            }
        elif 70 <= tempo <= 120:
            # Medium tempos favor 4/4, 3/4
            scores = {
                "4/4": 0.7,
                "3/4": 0.6,
                "6/8": 0.3
            }
        else:
            # Fast tempos favor 4/4
            scores = {
                "4/4": 0.8,
                "3/4": 0.4,
                "6/8": 0.2
            }
        
        # Find best match
        best_ts = max(scores.items(), key=lambda x: x[1])
        return {"time_signature": best_ts[0], "confidence": best_ts[1]}
    
    def _combine_detection_results(self, results, tempo):
        """Combine results from different detection methods"""
        # Define weights for different methods
        method_weights = {
            "autocorrelation": 0.25,
            "pattern_matching": 0.30,
            "spectral": 0.20,
            "note_density": 0.20,
            "tempo_based": 0.05
        }
        
        # Prior probability (based on frequency in music)
        prior_weights = {ts: info["weight"] for ts, info in self.common_time_signatures.items()}
        
        # Combine votes
        total_votes = {ts: prior_weights.get(ts, 0.1) for ts in self.common_time_signatures}
        
        for method, result in results.items():
            ts = result["time_signature"]
            confidence = result["confidence"]
            weight = method_weights.get(method, 0.1)
            
            # Add weighted vote
            if ts in total_votes:
                total_votes[ts] += confidence * weight
            else:
                total_votes[ts] = confidence * weight
        
        # Special case: disambiguate between 3/4 and 6/8
        if "3/4" in total_votes and "6/8" in total_votes:
            # If the two are close, use tempo to break tie
            if abs(total_votes["3/4"] - total_votes["6/8"]) < 0.1:
                if tempo < 100:  # Slower tempo favors 6/8
                    total_votes["6/8"] += 0.1
                else:  # Faster tempo favors 3/4
                    total_votes["3/4"] += 0.1
        
        # Get highest scoring time signature
        best_ts = max(total_votes.items(), key=lambda x: x[1])
        
        # Calculate confidence score (normalize to 0-1)
        confidence = best_ts[1] / (sum(total_votes.values()) + 0.001)
        confidence = min(0.95, max(0.4, confidence))  # Bound confidence
        
        return {
            "time_signature": best_ts[0],
            "confidence": confidence,
            "all_candidates": {ts: float(score) for ts, score in total_votes.items()}
        }
    
    def _evaluate_beat_pattern(self, beat_strengths, pattern_length):
        """
        Evaluate how consistently a specific pattern length fits the beat strengths
        
        Args:
            beat_strengths: Array of normalized beat strengths
            pattern_length: Length of pattern to evaluate
            
        Returns:
            score: How well this pattern length explains the data (0-1)
        """
        if len(beat_strengths) < pattern_length * 2:
            return 0.0
            
        # Calculate correlation between consecutive patterns
        correlations = []
        
        num_full_patterns = len(beat_strengths) // pattern_length
        for i in range(num_full_patterns - 1):
            pattern1 = beat_strengths[i*pattern_length:(i+1)*pattern_length]
            pattern2 = beat_strengths[(i+1)*pattern_length:(i+2)*pattern_length]
            
            # Calculate similarity between consecutive patterns
            if len(pattern1) == len(pattern2) and len(pattern1) > 0:
                corr = np.corrcoef(pattern1, pattern2)[0, 1]
                if not np.isnan(corr):
                    correlations.append(corr)
        
        # Calculate variance of beat strengths within each position
        variance_score = 0
        if num_full_patterns >= 2:
            position_values = [[] for _ in range(pattern_length)]
            
            for i in range(num_full_patterns):
                for pos in range(pattern_length):
                    idx = i * pattern_length + pos
                    if idx < len(beat_strengths):
                        position_values[pos].append(beat_strengths[idx])
            
            # Calculate variance ratio (higher means consistent accent patterns)
            between_pos_var = np.var([np.mean(vals) for vals in position_values if vals])
            within_pos_var = np.mean([np.var(vals) for vals in position_values if len(vals) > 1])
            
            if within_pos_var > 0:
                variance_score = between_pos_var / within_pos_var
                variance_score = min(1.0, variance_score / 2.0)  # Normalize
        
        # Combine correlation and variance scores
        if correlations:
            correlation_score = np.mean(correlations)
            return 0.7 * correlation_score + 0.3 * variance_score
        
        return 0.5 * variance_score  # Lower confidence if we couldn't calculate correlations
    
    def _extract_average_pattern(self, beat_strengths, pattern_length):
        """
        Extract the average beat pattern of specified length
        
        Args:
            beat_strengths: Array of beat strengths
            pattern_length: Length of pattern to extract
            
        Returns:
            Average pattern of the specified length
        """
        if len(beat_strengths) < pattern_length:
            return np.array([])
            
        # Number of complete patterns
        num_patterns = len(beat_strengths) // pattern_length
        
        if num_patterns == 0:
            return np.array([])
            
        # Reshape to stack patterns and calculate average
        patterns = beat_strengths[:num_patterns * pattern_length].reshape((num_patterns, pattern_length))
        return np.mean(patterns, axis=0)

    def analyze_tonality(self, y, sr):
        """Analyze tonal features: key, mode, harmonic features"""
        # Compute chromagram
        chroma = librosa.feature.chroma_cqt(y=y, sr=sr)

        # Krumhansl-Schmuckler key-finding algorithm (simplified)
        # Major and minor profiles from music theory research
        major_profile = np.array([6.35, 2.23, 3.48, 2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66, 2.29, 2.88])
        minor_profile = np.array([6.33, 2.68, 3.52, 5.38, 2.60, 3.53, 2.54, 4.75, 3.98, 2.69, 3.34, 3.17])

        # Calculate the correlation of the chroma with each key profile
        chroma_avg = np.mean(chroma, axis=1)
        major_corr = np.zeros(12)
        minor_corr = np.zeros(12)

        for i in range(12):
            major_corr[i] = np.corrcoef(np.roll(chroma_avg, i), major_profile)[0, 1]
            minor_corr[i] = np.corrcoef(np.roll(chroma_avg, i), minor_profile)[0, 1]

        # Find the key with the highest correlation
        max_major_idx = np.argmax(major_corr)
        max_minor_idx = np.argmax(minor_corr)

        # Determine if the piece is in a major or minor key
        if major_corr[max_major_idx] > minor_corr[max_minor_idx]:
            mode = "major"
            key = self.key_names[max_major_idx]
        else:
            mode = "minor"
            key = self.key_names[max_minor_idx]

        # Calculate harmony complexity (variability in harmonic content)
        harmony_complexity = np.std(chroma) / np.mean(chroma) if np.mean(chroma) > 0 else 0

        # Calculate tonal stability (consistency of tonal center)
        tonal_stability = 1.0 / (np.std(chroma_avg) + 0.001)  # Add small value to avoid division by zero

        # Calculate spectral brightness (center of mass of the spectrum)
        spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
        brightness = np.mean(spectral_centroid) / (sr/2)  # Normalize by Nyquist frequency

        # Calculate dissonance using spectral contrast
        spectral_contrast = librosa.feature.spectral_contrast(y=y, sr=sr)
        dissonance = np.mean(spectral_contrast[0])  # Higher values may indicate more dissonance

        return {
            "key": key,
            "mode": mode,
            "is_major": mode == "major",
            "harmony_complexity": float(harmony_complexity),
            "tonal_stability": float(tonal_stability),
            "brightness": float(brightness),
            "dissonance": float(dissonance)
        }

    def analyze_energy(self, y, sr):
        """Analyze energy characteristics of the audio"""
        # RMS Energy (overall loudness)
        rms = librosa.feature.rms(y=y)[0]

        # Energy metrics
        mean_energy = np.mean(rms)
        energy_std = np.std(rms)
        energy_dynamic_range = np.max(rms) - np.min(rms) if len(rms) > 0 else 0

        # Energy distribution across frequency ranges
        spec = np.abs(librosa.stft(y))

        # Divide the spectrum into low, mid, and high ranges
        freq_bins = spec.shape[0]
        low_freq_energy = np.mean(spec[:int(freq_bins*0.2), :])
        mid_freq_energy = np.mean(spec[int(freq_bins*0.2):int(freq_bins*0.8), :])
        high_freq_energy = np.mean(spec[int(freq_bins*0.8):, :])

        # Normalize to create a distribution
        total_energy = low_freq_energy + mid_freq_energy + high_freq_energy
        if total_energy > 0:
            low_freq_ratio = low_freq_energy / total_energy
            mid_freq_ratio = mid_freq_energy / total_energy
            high_freq_ratio = high_freq_energy / total_energy
        else:
            low_freq_ratio = mid_freq_ratio = high_freq_ratio = 1/3

        return {
            "mean_energy": float(mean_energy),
            "energy_std": float(energy_std),
            "energy_dynamic_range": float(energy_dynamic_range),
            "frequency_distribution": {
                "low_freq": float(low_freq_ratio),
                "mid_freq": float(mid_freq_ratio),
                "high_freq": float(high_freq_ratio)
            }
        }

    def analyze_emotion(self, rhythm_data, tonal_data, energy_data):
        """Classify the emotion based on musical features"""
        # Extract key features for emotion detection
        tempo = rhythm_data["tempo"]
        is_major = tonal_data["is_major"]
        energy = energy_data["mean_energy"]
        brightness = tonal_data["brightness"]

        # Calculate scores for each emotion
        emotion_scores = {}
        for emotion, profile in self.emotion_profiles.items():
            score = 0.0

            # Tempo contribution (0-1 score)
            tempo_range = profile["tempo"]
            if tempo_range[0] <= tempo <= tempo_range[1]:
                score += 1.0
            else:
                # Partial score based on distance
                distance = min(abs(tempo - tempo_range[0]), abs(tempo - tempo_range[1]))
                max_distance = 40  # Maximum distance to consider
                score += max(0, 1 - (distance / max_distance))

            # Energy contribution (0-1 score)
            energy_range = profile["energy"]
            if energy_range[0] <= energy <= energy_range[1]:
                score += 1.0
            else:
                # Partial score based on distance
                distance = min(abs(energy - energy_range[0]), abs(energy - energy_range[1]))
                max_distance = 0.5  # Maximum distance to consider
                score += max(0, 1 - (distance / max_distance))

            # Mode contribution (0-1 score)
            if profile["major_mode"] is not None:  # Some emotions don't have strong mode preference
                score += 1.0 if profile["major_mode"] == is_major else 0.0
            else:
                score += 0.5  # Neutral contribution

            # Brightness contribution (0-1 score)
            brightness_range = profile["brightness"]
            if brightness_range[0] <= brightness <= brightness_range[1]:
                score += 1.0
            else:
                # Partial score based on distance
                distance = min(abs(brightness - brightness_range[0]), abs(brightness - brightness_range[1]))
                max_distance = 0.5  # Maximum distance to consider
                score += max(0, 1 - (distance / max_distance))

            # Normalize score (0-1 range)
            emotion_scores[emotion] = score / 4.0

        # Find primary emotion
        primary_emotion = max(emotion_scores.items(), key=lambda x: x[1])

        # Calculate valence and arousal (dimensional emotion model)
        # Mapping different emotions to valence-arousal space
        valence_map = {
            'happy': 0.8, 'sad': 0.2, 'calm': 0.6,
            'energetic': 0.7, 'tense': 0.3, 'nostalgic': 0.5
        }

        arousal_map = {
            'happy': 0.7, 'sad': 0.3, 'calm': 0.2,
            'energetic': 0.9, 'tense': 0.8, 'nostalgic': 0.4
        }

        # Calculate weighted valence and arousal
        total_weight = sum(emotion_scores.values())
        if total_weight > 0:
            valence = sum(score * valence_map[emotion] for emotion, score in emotion_scores.items()) / total_weight
            arousal = sum(score * arousal_map[emotion] for emotion, score in emotion_scores.items()) / total_weight
        else:
            valence = 0.5
            arousal = 0.5

        return {
            "primary_emotion": primary_emotion[0],
            "confidence": primary_emotion[1],
            "emotion_scores": emotion_scores,
            "valence": float(valence),    # Pleasure dimension (0-1)
            "arousal": float(arousal)     # Activity dimension (0-1)
        }

    def analyze_theme(self, rhythm_data, tonal_data, emotion_data):
        """Infer potential themes based on musical features and emotion"""
        # Extract relevant features
        primary_emotion = emotion_data["primary_emotion"]
        harmony_complexity = tonal_data["harmony_complexity"]

        # Calculate theme scores
        theme_scores = {}
        for theme, profile in self.theme_profiles.items():
            score = 0.0

            # Emotion contribution
            if primary_emotion in profile["emotion"]:
                # Emotions listed earlier have stronger connection to the theme
                position_weight = 1.0 / (profile["emotion"].index(primary_emotion) + 1)
                score += position_weight

            # Secondary emotions contribution
            secondary_emotions = [e for e, s in emotion_data["emotion_scores"].items()
                                 if s > 0.5 and e != primary_emotion]
            for emotion in secondary_emotions:
                if emotion in profile["emotion"]:
                    score += 0.3  # Less weight than primary emotion

            # Harmony complexity contribution
            complexity_range = profile["harmony_complexity"]
            if complexity_range[0] <= harmony_complexity <= complexity_range[1]:
                score += 1.0
            else:
                # Partial score based on distance
                distance = min(abs(harmony_complexity - complexity_range[0]),
                              abs(harmony_complexity - complexity_range[1]))
                max_distance = 0.5  # Maximum distance to consider
                score += max(0, 1 - (distance / max_distance))

            # Normalize score
            theme_scores[theme] = min(1.0, score / 2.5)

        # Find primary theme
        primary_theme = max(theme_scores.items(), key=lambda x: x[1])

        # Find secondary themes (scores > 0.5)
        secondary_themes = [(theme, score) for theme, score in theme_scores.items()
                          if score > 0.5 and theme != primary_theme[0]]
        secondary_themes.sort(key=lambda x: x[1], reverse=True)

        return {
            "primary_theme": primary_theme[0],
            "confidence": primary_theme[1],
            "secondary_themes": [t[0] for t in secondary_themes[:2]],  # Top 2 secondary themes
            "theme_scores": theme_scores
        }

    def analyze_music(self, file_path):
        """Main function to perform comprehensive music analysis"""
        # Load the audio file
        y, sr = self.load_audio(file_path)
        if y is None:
            return {"error": "Failed to load audio file"}

        # Run all analyses
        rhythm_data = self.analyze_rhythm(y, sr)
        tonal_data = self.analyze_tonality(y, sr)
        energy_data = self.analyze_energy(y, sr)

        # Higher-level analyses that depend on the basic features
        emotion_data = self.analyze_emotion(rhythm_data, tonal_data, energy_data)
        theme_data = self.analyze_theme(rhythm_data, tonal_data, emotion_data)

        # Convert any remaining numpy values to native Python types
        def convert_numpy_to_python(obj):
            if isinstance(obj, dict):
                return {k: convert_numpy_to_python(v) for k, v in obj.items()}
            elif isinstance(obj, list):
                return [convert_numpy_to_python(item) for item in obj]
            elif isinstance(obj, np.ndarray):
                return obj.tolist()
            elif isinstance(obj, np.number):
                return float(obj)
            else:
                return obj

        # Ensure all numpy values are converted
        rhythm_data = convert_numpy_to_python(rhythm_data)
        tonal_data = convert_numpy_to_python(tonal_data)
        energy_data = convert_numpy_to_python(energy_data)
        emotion_data = convert_numpy_to_python(emotion_data)
        theme_data = convert_numpy_to_python(theme_data)

        # Combine all results
        return {
            "file": file_path,
            "rhythm_analysis": rhythm_data,
            "tonal_analysis": tonal_data,
            "energy_analysis": energy_data,
            "emotion_analysis": emotion_data,
            "theme_analysis": theme_data,
            "summary": {
                "tempo": float(rhythm_data["tempo"]),
                "time_signature": rhythm_data["estimated_time_signature"],
                "key": tonal_data["key"],
                "mode": tonal_data["mode"],
                "primary_emotion": emotion_data["primary_emotion"],
                "primary_theme": theme_data["primary_theme"]
            }
        }

    # def visualize_analysis(self, file_path):
    #     """Create visualizations for the music analysis results"""
    #     # Check if matplotlib is available
    #     if plt is None:
    #         print("Error: matplotlib is not installed. Visualization is not available.")
    #         return
    #     
    #     # Load audio and run analysis
    #     y, sr = self.load_audio(file_path)
    #     if y is None:
    #         print("Error: Failed to load audio file")
    #         return
    #
    #     results = self.analyze_music(file_path)
    #
    #     # Create visualization
    #     plt.figure(figsize=(15, 12))

    #     # Waveform
    #     plt.subplot(3, 2, 1)
    #     librosa.display.waveshow(y, sr=sr, alpha=0.6)
    #     plt.title(f'Waveform (Tempo: {results["rhythm_analysis"]["tempo"]:.1f} BPM)')

    #     # Spectrogram
    #     plt.subplot(3, 2, 2)
    #     D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
    #     librosa.display.specshow(D, sr=sr, x_axis='time', y_axis='log')
    #     plt.colorbar(format='%+2.0f dB')
    #     plt.title(f'Spectrogram (Key: {results["tonal_analysis"]["key"]} {results["tonal_analysis"]["mode"]})')

    #     # Chromagram
    #     plt.subplot(3, 2, 3)
    #     chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
    #     librosa.display.specshow(chroma, y_axis='chroma', x_axis='time')
    #     plt.colorbar()
    #     plt.title('Chromagram')

    #     # Onset strength and beats
    #     plt.subplot(3, 2, 4)
    #     onset_env = librosa.onset.onset_strength(y=y, sr=sr)
    #     times = librosa.times_like(onset_env, sr=sr)
    #     plt.plot(times, librosa.util.normalize(onset_env), label='Onset strength')
    #     plt.vlines(results["rhythm_analysis"]["beat_times"], 0, 1, alpha=0.5, color='r',
    #               linestyle='--', label='Beats')
    #     plt.legend()
    #     plt.title('Rhythm Analysis')

    #     # Emotion scores
    #     plt.subplot(3, 2, 5)
    #     emotions = list(results["emotion_analysis"]["emotion_scores"].keys())
    #     scores = list(results["emotion_analysis"]["emotion_scores"].values())
    #     plt.bar(emotions, scores, color='skyblue')
    #     plt.ylim(0, 1)
    #     plt.title(f'Emotion Analysis (Primary: {results["emotion_analysis"]["primary_emotion"]})')
    #     plt.xticks(rotation=45)

    #     # Theme scores
    #     plt.subplot(3, 2, 6)
    #     themes = list(results["theme_analysis"]["theme_scores"].keys())
    #     scores = list(results["theme_analysis"]["theme_scores"].values())
    #     plt.bar(themes, scores, color='lightgreen')
    #     plt.ylim(0, 1)
    #     plt.title(f'Theme Analysis (Primary: {results["theme_analysis"]["primary_theme"]})')
    #     plt.xticks(rotation=45)

    #     plt.tight_layout()
    #     plt.show()


# Create an instance of the analyzer
analyzer = MusicAnalyzer()

# The following code is for demonstration purposes only
# and will only run if executed directly (not when imported)
if __name__ == "__main__":
    # Replace this with a real audio file path when running as a script
    demo_file = "path/to/your/audio/file.mp3"
    
    # Analyze the uploaded audio file
    results = analyzer.analyze_music(demo_file)
    
    # Print analysis summary
    print("\n=== MUSIC ANALYSIS SUMMARY ===")
    print(f"Tempo: {results['summary']['tempo']:.1f} BPM")
    print(f"Time Signature: {results['summary']['time_signature']}")
    print(f"Key: {results['summary']['key']} {results['summary']['mode']}")
    print(f"Primary Emotion: {results['summary']['primary_emotion']}")
    print(f"Primary Theme: {results['summary']['primary_theme']}")
    
    # Show detailed results (optional)
    import json
    print("\n=== DETAILED ANALYSIS ===")
    print(json.dumps(results, indent=2))
    
    # Visualize the analysis
    # analyzer.visualize_analysis(demo_file)