File size: 44,497 Bytes
9e21eef
 
 
 
 
4ddd8f4
8515dc5
 
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
bddf9c4
9e21eef
8515dc5
38b696f
8515dc5
 
 
 
9e21eef
 
 
 
 
 
 
 
bddf9c4
9e21eef
 
 
 
 
e3108aa
 
 
 
 
 
 
9e21eef
e3108aa
 
 
 
 
 
 
9e21eef
e3108aa
 
 
5b33796
 
 
 
 
 
 
bddf9c4
e3108aa
 
 
 
5b33796
 
e3108aa
 
5b33796
e3108aa
 
 
 
bddf9c4
5b33796
 
bddf9c4
5b33796
 
 
8515dc5
4ddd8f4
00af04f
5b33796
 
00af04f
5b33796
00af04f
 
5b33796
 
bddf9c4
5b33796
 
 
 
31a885a
e3108aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bddf9c4
5b33796
 
 
bddf9c4
3db0204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b33796
 
 
38b696f
5b33796
 
 
 
 
 
 
bddf9c4
5b33796
8515dc5
 
 
 
 
 
 
 
 
 
 
 
 
bddf9c4
8c42b47
 
 
 
 
 
 
4c87bcd
8c42b47
 
 
 
 
8515dc5
bddf9c4
5b33796
 
 
8515dc5
bddf9c4
5b33796
31a885a
5b33796
 
 
 
 
 
 
8515dc5
 
 
c61f3e3
 
 
e3108aa
 
 
5b33796
8515dc5
 
 
 
 
 
 
 
6ac84ae
 
 
0a49a17
 
6ac84ae
 
0a49a17
 
 
6ac84ae
4c87bcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ac84ae
4c87bcd
8515dc5
4c87bcd
 
6ac84ae
4adac6c
8515dc5
4adac6c
 
 
 
 
 
 
 
 
cc2dcec
d50db5f
4adac6c
 
 
4c87bcd
4adac6c
4c87bcd
4adac6c
cc2dcec
4adac6c
 
 
 
 
cc2dcec
4adac6c
 
 
 
 
cc2dcec
4adac6c
cc2dcec
4adac6c
5b33796
38b696f
8515dc5
e3108aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b33796
 
 
 
8515dc5
e3108aa
5b33796
31a885a
e3108aa
 
 
31a885a
8515dc5
 
370bf23
8515dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
370bf23
8515dc5
 
 
 
 
 
 
370bf23
8515dc5
 
 
370bf23
8515dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a885a
8515dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ac84ae
 
 
8515dc5
 
 
 
4adac6c
 
 
 
 
 
 
 
 
 
4c87bcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4adac6c
8515dc5
 
 
 
 
 
 
 
6ac84ae
8515dc5
6ac84ae
 
 
4adac6c
6ac84ae
4c87bcd
 
 
 
0a49a17
4c87bcd
 
 
 
 
0a49a17
4c87bcd
0a49a17
4adac6c
 
 
 
 
0a49a17
4c87bcd
0a49a17
4adac6c
4c87bcd
4adac6c
 
 
0a49a17
4c87bcd
0a49a17
4adac6c
 
 
 
 
0a49a17
 
 
4c87bcd
 
 
4adac6c
4c87bcd
4adac6c
4c87bcd
4adac6c
4c87bcd
0a49a17
4c87bcd
 
 
 
0a49a17
 
4c87bcd
0a49a17
 
4c87bcd
 
 
6ac84ae
4c87bcd
4adac6c
 
4c87bcd
 
 
 
 
 
 
 
4adac6c
6ac84ae
4adac6c
6ac84ae
8515dc5
 
 
 
 
4c87bcd
 
 
 
 
 
4adac6c
 
8515dc5
 
 
 
4ddd8f4
5b33796
 
 
 
 
4c87bcd
8515dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a49a17
 
 
 
 
 
 
8515dc5
 
 
0a49a17
8515dc5
0a49a17
 
8515dc5
0a49a17
8515dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a49a17
8515dc5
 
 
 
 
0a49a17
8515dc5
 
 
 
 
cc2dcec
 
 
 
 
 
 
 
4c87bcd
 
 
 
 
0a49a17
8515dc5
 
 
 
 
cc2dcec
 
8515dc5
cc2dcec
 
0a49a17
cc2dcec
 
0a49a17
cc2dcec
 
0a49a17
cc2dcec
 
8515dc5
cc2dcec
 
8515dc5
 
 
cc2dcec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4adac6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bfb4bb
4adac6c
 
 
 
 
 
 
 
 
 
 
1bfb4bb
4adac6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b33796
 
 
 
 
 
 
 
 
 
 
 
 
 
651b0cd
5b33796
 
 
651b0cd
5b33796
 
 
 
 
 
 
 
 
8515dc5
 
 
5b33796
 
 
 
 
 
8515dc5
5b33796
651b0cd
8c42b47
 
 
 
5b33796
 
 
 
8515dc5
 
8c42b47
 
 
 
 
 
 
5b33796
31a885a
5b33796
054fb90
5b33796
 
9e21eef
5b33796
 
 
 
e3108aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
import os
import io
import gradio as gr
import torch
import numpy as np
import re
import pronouncing
import functools
from transformers import (
    AutoModelForAudioClassification,
    AutoFeatureExtractor,
    AutoTokenizer,
    pipeline,
    AutoModelForCausalLM,
    BitsAndBytesConfig
)
from huggingface_hub import login
from utils import (
    load_audio,
    extract_audio_duration,
    extract_mfcc_features,
    format_genre_results,
    ensure_cuda_availability
)
from emotionanalysis import MusicAnalyzer 
import librosa
from beat_analysis import BeatAnalyzer  # Import the BeatAnalyzer class

# Initialize beat analyzer
beat_analyzer = BeatAnalyzer()

# Login to Hugging Face Hub if token is provided
if "HF_TOKEN" in os.environ:
    login(token=os.environ["HF_TOKEN"])

# Constants
GENRE_MODEL_NAME = "dima806/music_genres_classification"
MUSIC_DETECTION_MODEL = "MIT/ast-finetuned-audioset-10-10-0.4593"
LLM_MODEL_NAME = "Qwen/Qwen3-32B"
SAMPLE_RATE = 22050  # Standard sample rate for audio processing

# Check CUDA availability (for informational purposes)
CUDA_AVAILABLE = ensure_cuda_availability()

# Load models at initialization time
print("Loading genre classification model...")
try:
    genre_feature_extractor = AutoFeatureExtractor.from_pretrained(GENRE_MODEL_NAME)
    genre_model = AutoModelForAudioClassification.from_pretrained(
        GENRE_MODEL_NAME,
        device_map="auto" if CUDA_AVAILABLE else None
    )
    # Create a convenience wrapper function with the same interface as before
    def get_genre_model():
        return genre_model, genre_feature_extractor
except Exception as e:
    print(f"Error loading genre model: {str(e)}")
    genre_model = None
    genre_feature_extractor = None

# Load LLM and tokenizer at initialization time
print("Loading Qwen LLM model with 4-bit quantization...")
try:
    # Configure 4-bit quantization for better performance
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.float16,
        bnb_4bit_use_double_quant=True
    )
    
    llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
    llm_model = AutoModelForCausalLM.from_pretrained(
        LLM_MODEL_NAME,
        quantization_config=quantization_config,
        device_map="auto",
        trust_remote_code=True,
        torch_dtype=torch.float16,
        use_cache=True
    )
except Exception as e:
    print(f"Error loading LLM model: {str(e)}")
    llm_tokenizer = None
    llm_model = None

# Create music analyzer instance
music_analyzer = MusicAnalyzer()

# Process uploaded audio file
def process_audio(audio_file):
    if audio_file is None:
        return "No audio file provided", None, None, None, None, None, None, None
    
    try:
        # Load and analyze audio
        y, sr = load_audio(audio_file, sr=SAMPLE_RATE)
        
        # Basic audio information
        duration = extract_audio_duration(y, sr)
        
        # Analyze music with MusicAnalyzer
        music_analysis = music_analyzer.analyze_music(audio_file)
        
        # Extract key information
        tempo = music_analysis["rhythm_analysis"]["tempo"]
        emotion = music_analysis["emotion_analysis"]["primary_emotion"]
        theme = music_analysis["theme_analysis"]["primary_theme"]
        
        # Use genre classification directly instead of pipeline
        if genre_model is not None and genre_feature_extractor is not None:
            # Resample audio to 16000 Hz for the genre model
            y_16k = librosa.resample(y, orig_sr=sr, target_sr=16000)
            
            # Extract features
            inputs = genre_feature_extractor(
                y_16k, 
                sampling_rate=16000, 
                return_tensors="pt"
            ).to(genre_model.device)
            
            # Classify genre
            with torch.no_grad():
                outputs = genre_model(**inputs)
                logits = outputs.logits
                probs = torch.nn.functional.softmax(logits, dim=-1)
                
            # Get top genres
            values, indices = torch.topk(probs[0], k=5)
            top_genres = [(genre_model.config.id2label[idx.item()], val.item()) for val, idx in zip(values, indices)]
        else:
            # Fallback if model loading failed
            top_genres = [("Unknown", 1.0)]
        
        # Format genre results for display
        genre_results_text = format_genre_results(top_genres)
        primary_genre = top_genres[0][0]
        
        # Override time signature for pop and disco genres to always be 4/4
        if any(genre.lower() in primary_genre.lower() for genre in ['pop', 'disco']):
            music_analysis["rhythm_analysis"]["estimated_time_signature"] = "4/4"
            time_signature = "4/4"
        else:
            # Use detected time signature for other genres
            time_signature = music_analysis["rhythm_analysis"]["estimated_time_signature"]
            
            # Ensure time signature is one of the supported ones (4/4, 3/4, 6/8)
            if time_signature not in ["4/4", "3/4", "6/8"]:
                time_signature = "4/4"  # Default to 4/4 if unsupported
                music_analysis["rhythm_analysis"]["estimated_time_signature"] = time_signature
        
        # Analyze beat patterns and create lyrics template using the time signature
        beat_analysis = beat_analyzer.analyze_beat_pattern(audio_file, time_signature=time_signature)
        lyric_templates = beat_analyzer.create_lyric_template(beat_analysis)
        
        # Store these in the music_analysis dict for use in lyrics generation
        music_analysis["beat_analysis"] = beat_analysis
        music_analysis["lyric_templates"] = lyric_templates
        
        # Prepare analysis summary
        analysis_summary = f"""
### Music Analysis Results

**Duration:** {duration:.2f} seconds
**Tempo:** {tempo:.1f} BPM
**Time Signature:** {time_signature}
**Key:** {music_analysis["tonal_analysis"]["key"]} {music_analysis["tonal_analysis"]["mode"]}
**Primary Emotion:** {emotion}
**Primary Theme:** {theme}
**Top Genre:** {primary_genre}

{genre_results_text}
"""

        # Add beat analysis summary
        if lyric_templates:
            analysis_summary += f"""
### Beat Analysis

**Total Phrases:** {len(lyric_templates)}
**Average Beats Per Phrase:** {np.mean([t['num_beats'] for t in lyric_templates]):.1f}
**Beat Pattern Examples:** 
- Phrase 1: {lyric_templates[0]['stress_pattern'] if lyric_templates else 'N/A'}
- Phrase 2: {lyric_templates[1]['stress_pattern'] if len(lyric_templates) > 1 else 'N/A'}
"""
        
        # Check if genre is supported for lyrics generation
        # Use the supported_genres list from BeatAnalyzer
        genre_supported = any(genre.lower() in primary_genre.lower() for genre in beat_analyzer.supported_genres)
        
        # Generate lyrics only for supported genres
        if genre_supported:
            lyrics = generate_lyrics(music_analysis, primary_genre, duration)
            beat_match_analysis = analyze_lyrics_rhythm_match(lyrics, lyric_templates, primary_genre)
        else:
            supported_genres_str = ", ".join([genre.capitalize() for genre in beat_analyzer.supported_genres])
            lyrics = f"Lyrics generation is only supported for the following genres: {supported_genres_str}.\n\nDetected genre '{primary_genre}' doesn't have strong syllable-to-beat patterns required for our lyric generation algorithm."
            beat_match_analysis = "Lyrics generation not available for this genre."
        
        return analysis_summary, lyrics, tempo, time_signature, emotion, theme, primary_genre, beat_match_analysis
    
    except Exception as e:
        error_msg = f"Error processing audio: {str(e)}"
        print(error_msg)
        return error_msg, None, None, None, None, None, None, None

def generate_lyrics(music_analysis, genre, duration):
    try:
        # Extract meaningful information for context
        tempo = music_analysis["rhythm_analysis"]["tempo"]
        key = music_analysis["tonal_analysis"]["key"]
        mode = music_analysis["tonal_analysis"]["mode"]
        emotion = music_analysis["emotion_analysis"]["primary_emotion"]
        theme = music_analysis["theme_analysis"]["primary_theme"]
        
        # Get beat analysis and templates
        lyric_templates = music_analysis.get("lyric_templates", [])
        
        # Define num_phrases here to ensure it's available in all code paths
        num_phrases = len(lyric_templates) if lyric_templates else 4
        
        # Verify LLM is loaded
        if llm_model is None or llm_tokenizer is None:
            return "Error: LLM model not properly loaded"

        # If no templates, fall back to original method
        if not lyric_templates:
            # Simplified prompt
            prompt = f"""Write song lyrics for a {genre} song in {key} {mode} with tempo {tempo} BPM. The emotion is {emotion} and theme is {theme}.

ONLY WRITE THE ACTUAL LYRICS. NO EXPLANATIONS OR META-TEXT.
"""
        else:
            # Calculate the typical syllable range for this genre
            if num_phrases > 0:
                # Get max syllables per line from templates
                max_syllables = max([t.get('max_expected', 7) for t in lyric_templates]) if lyric_templates[0].get('max_expected') else 7
                min_syllables = min([t.get('min_expected', 2) for t in lyric_templates]) if lyric_templates[0].get('min_expected') else 2
                avg_syllables = (min_syllables + max_syllables) // 2
            else:
                min_syllables = 2
                max_syllables = 7
                avg_syllables = 4
            
            # Create random examples based on the song's theme and emotion
            # to avoid the LLM copying our examples directly
            example_themes = [
                {"emotion": "love", "fragments": ["I see your face", "across the room", "my heart beats fast", "can't look away"]},
                {"emotion": "sadness", "fragments": ["tears fall like rain", "on empty streets", "memories fade", "into the dark"]},
                {"emotion": "nostalgia", "fragments": ["old photographs", "dusty and worn", "remind me of when", "we were young"]},
                {"emotion": "hope", "fragments": ["dawn breaks through clouds", "new day begins", "darkness recedes", "light fills my soul"]},
                {"emotion": "longing", "fragments": ["miles apart now", "under same stars", "thinking of you", "across the distance"]}
            ]
            
            # Select a theme that doesn't match the song's emotion to avoid copying
            selected_themes = [t for t in example_themes if t["emotion"].lower() != emotion.lower()]
            if not selected_themes:
                selected_themes = example_themes
                
            import random
            example_theme = random.choice(selected_themes)
            example_fragments = example_theme["fragments"]
            random.shuffle(example_fragments)  # Randomize order
            
            # Create example 1 - grammatical connection with conjunction
            ex1_line1 = example_fragments[0] if len(example_fragments) > 0 else "The morning sun"
            ex1_line2 = example_fragments[1] if len(example_fragments) > 1 else "breaks through clouds"
            ex1_line3 = example_fragments[2] if len(example_fragments) > 2 else "as birds begin"
            ex1_line4 = example_fragments[3] if len(example_fragments) > 3 else "their dawn chorus"
            
            # Create example 2 - prepositional connection
            ex2_fragments = [
                "She walks alone",
                "through crowded streets",
                "with memories",
                "of better days"
            ]
            random.shuffle(ex2_fragments)
            
            # Create a more direct prompt with examples and specific syllable count guidance
            prompt = f"""Write song lyrics for a {genre} song in {key} {mode} with tempo {tempo} BPM.

PRIMARY THEME: {theme}
EMOTION: {emotion}

I need EXACTLY {num_phrases} lines of lyrics with these STRICT requirements:

CRITICAL INSTRUCTIONS:
1. EXTREMELY SHORT LINES: Each line MUST be between {min_syllables}-{max_syllables} syllables MAXIMUM
2. ENFORCE BREVITY: NO exceptions to the syllable limit - not a single line should exceed {max_syllables} syllables
3. FRAGMENT STYLE: Use sentence fragments and short phrases instead of complete sentences
4. CONNECTED THOUGHTS: Use prepositions and conjunctions at the start of lines to connect ideas
5. SIMPLE WORDS: Choose one or two-syllable words whenever possible
6. CONCRETE IMAGERY: Use specific, tangible details rather than abstract concepts
7. NO CLICHÉS: Avoid common phrases like "time slips away" or "memories fade"
8. ONE THOUGHT PER LINE: Express just one simple idea in each line

FORMAT:
- Write exactly {num_phrases} short text lines
- No annotations, explanations, or line numbers
- Do not count syllables in the output

IMPORTANT: If you can't express an idea in {max_syllables} or fewer syllables, break it across two lines or choose a simpler way to express it.

===== EXAMPLES OF CORRECT LENGTH =====

Example 1 (short fragments connected by flow):
Cold tea cup (3 syllables)
on windowsill (3 syllables)
cat watches rain (3 syllables)
through foggy glass (3 syllables)

Example 2 (prepositional connections):
Keys dropped here (3 syllables)
by the front door (3 syllables)
where shoes pile up (3 syllables)
since you moved in (3 syllables)

DO NOT copy my examples. Create ENTIRELY NEW lyrics about {theme} with {emotion} feeling.

REMEMBER: NO LINE SHOULD EXCEED {max_syllables} SYLLABLES - this is the most important rule!
"""

        # Generate lyrics using the LLM model
        messages = [
            {"role": "user", "content": prompt}
        ]
        
        # Apply chat template
        text = llm_tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        
        # Tokenize and move to model device
        model_inputs = llm_tokenizer([text], return_tensors="pt").to(llm_model.device)
        
        # Generate with optimized parameters
        generated_ids = llm_model.generate(
            **model_inputs,
            max_new_tokens=1024,
            do_sample=True,
            temperature=0.7,
            top_p=0.9,
            repetition_penalty=1.2,
            pad_token_id=llm_tokenizer.eos_token_id
        )
        
        # Decode the output
        output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
        lyrics = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
        
        # ULTRA AGGRESSIVE CLEANING - COMPLETELY REVISED
        # ------------------------------------------------
        
        # 1. First, look for any standard dividers that might separate thinking from lyrics
        divider_patterns = [
            r'Here are the lyrics:',
            r'Here is my song:',
            r'The lyrics:',
            r'My lyrics:',
            r'Song lyrics:',
            r'\*\*\*+',
            r'===+',
            r'---+',
            r'```',
            r'Lyrics:'
        ]
        
        for pattern in divider_patterns:
            matches = re.finditer(pattern, lyrics, re.IGNORECASE)
            for match in matches:
                # Keep only content after the divider
                lyrics = lyrics[match.end():].strip()
        
        # 2. Remove thinking tags completely before splitting into lines
        lyrics = re.sub(r'<think>.*?</think>', '', lyrics, flags=re.DOTALL)
        lyrics = re.sub(r'\[thinking\].*?\[/thinking\]', '', lyrics, flags=re.DOTALL)
        lyrics = re.sub(r'<think>', '', lyrics, flags=re.DOTALL)
        lyrics = re.sub(r'</think>', '', lyrics, flags=re.DOTALL)
        lyrics = re.sub(r'\[thinking\]', '', lyrics, flags=re.DOTALL)
        lyrics = re.sub(r'\[/thinking\]', '', lyrics, flags=re.DOTALL)
        
        # 3. Split text into lines for aggressive line-by-line filtering
        lines = lyrics.strip().split('\n')
        clean_lines = []
        
        # 4. Define comprehensive patterns for non-lyrical content
        non_lyric_patterns = [
            # Meta-commentary
            r'^(note|thinking|thoughts|let me|i will|i am going|i would|i can|i need to|i have to|i should|let\'s|here|now)',
            r'^(first|second|third|next|finally|importantly|remember|so|ok|okay|as requested|as asked|considering)',
            # Explanations
            r'syllable[s]?|phrase|rhythm|beats?|tempo|bpm|instruction|follow|alignment|match|corresponding',
            r'verses?|chorus|bridge|section|stanza|part|template|format|pattern|example',
            r'requirements?|guidelines?|song structure|stressed|unstressed',
            # Technical language
            r'generated|output|result|provide|create|write|draft|version',
            # Annotations and numbering
            r'^line \d+|^\d+[\.\):]|^\[\w+\]|^[\*\-\+] ',
            # Questions or analytical statements
            r'\?$|analysis|evaluate|review|check|ensure',
            # Instruction-like statements
            r'make sure|please note|important|notice|pay attention'
        ]
        
        # 5. Identify which lines are likely actual lyrics vs non-lyrics
        for line in lines:
            line = line.strip()
            
            # Skip empty lines or lines with just spaces/tabs
            if not line or line.isspace():
                continue
            
            # Skip lines that match any non-lyric pattern
            should_skip = False
            for pattern in non_lyric_patterns:
                if re.search(pattern, line.lower()):
                    should_skip = True
                    break
            
            if should_skip:
                continue
            
            # Skip section headers
            if (line.startswith('[') and ']' in line) or (line.startswith('(') and ')' in line and len(line) < 20):
                continue
            
            # Skip lines that look like annotations (not prose-like)
            if ':' in line and not any(word in line.lower() for word in ['like', 'when', 'where', 'how', 'why', 'what']):
                if len(line.split(':')[0]) < 15:  # Short prefixes followed by colon are likely annotations
                    continue
            
            # Skip very short lines that aren't likely to be lyrics (unless it's just a few words which could be valid)
            if len(line) < 3:
                continue
            
            # Skip lines that are numbered or bulleted
            if re.match(r'^\d+\.|\(#\d+\)|\d+\)', line):
                continue
            
            # Skip markdown-style emphasis or headers
            if re.match(r'^#{1,6} |^\*\*|^__', line):
                continue
            
            # Skip lines with think tags
            if '<think>' in line.lower() or '</think>' in line.lower() or '[thinking]' in line.lower() or '[/thinking]' in line.lower():
                continue
                
            # Add this line as it passed all filters
            clean_lines.append(line)
        
        # 6. Additional block-level filters for common patterns
        # Check beginning of lyrics for common prefixes
        if clean_lines and any(clean_lines[0].lower().startswith(prefix) for prefix in 
                            ['here are', 'these are', 'below are', 'following are']):
            clean_lines = clean_lines[1:]  # Skip the first line
        
        # 7. Process blocks of lines to detect explanation blocks
        if len(clean_lines) > 3:
            # Check for explanation blocks at the beginning
            first_three = ' '.join(clean_lines[:3]).lower()
            if any(term in first_three for term in ['i will', 'i have created', 'i\'ll provide', 'i\'ll write']):
                # This looks like an explanation, skip the first few lines
                start_idx = 0
                for i, line in enumerate(clean_lines):
                    if i >= 3 and not any(term in line.lower() for term in ['i will', 'created', 'write', 'provide']):
                        start_idx = i
                        break
                clean_lines = clean_lines[start_idx:]
            
            # Check for explanation blocks at the end
            last_three = ' '.join(clean_lines[-3:]).lower()
            if any(term in last_three for term in ['hope this', 'these lyrics', 'as you can see', 'this song', 'i have']):
                # This looks like an explanation at the end, truncate
                end_idx = len(clean_lines)
                for i in range(len(clean_lines) - 1, max(0, len(clean_lines) - 4), -1):
                    if i < len(clean_lines) and not any(term in clean_lines[i].lower() for term in 
                                                    ['hope', 'these lyrics', 'as you can see', 'this song']):
                        end_idx = i + 1
                        break
                clean_lines = clean_lines[:end_idx]
        
        # 8. Cleanup - Remove remaining annotations or thinking
        for i in range(len(clean_lines)):
            # Remove trailing thoughts/annotations
            clean_lines[i] = re.sub(r'\s+//.*$', '', clean_lines[i])
            clean_lines[i] = re.sub(r'\s+\(.*?\)$', '', clean_lines[i])
            
            # Remove thinking tags completely
            clean_lines[i] = re.sub(r'<think>.*?</think>', '', clean_lines[i], flags=re.DOTALL)
            clean_lines[i] = re.sub(r'\[thinking\].*?\[/thinking\]', '', clean_lines[i], flags=re.DOTALL)
            clean_lines[i] = re.sub(r'<think>', '', clean_lines[i])
            clean_lines[i] = re.sub(r'</think>', '', clean_lines[i])
            clean_lines[i] = re.sub(r'\[thinking\]', '', clean_lines[i])
            clean_lines[i] = re.sub(r'\[/thinking\]', '', clean_lines[i])
            
            # Remove syllable count annotations
            clean_lines[i] = re.sub(r'\s*\(\d+\s*syllables?\)', '', clean_lines[i])
        
        # 9. Filter out any remaining empty lines after tag removal
        clean_lines = [line for line in clean_lines if line.strip() and not line.isspace()]
        
        # 10. NEW: Apply strict syllable enforcement - split or truncate lines that are too long
        # This is a critical step to ensure no line exceeds our max syllable count
        if lyric_templates:
            max_allowed_syllables = min(7, max([t.get('max_expected', 6) for t in lyric_templates]))
        else:
            max_allowed_syllables = 6
            
        clean_lines = enforce_syllable_limits(clean_lines, max_allowed_syllables)
        
        # 11. NEW: Check for template copying or clichéd phrases
        cliched_patterns = [
            r'moonlight (shimmers?|falls?|dances?)',
            r'shadows? (dance|play|fall|stretch)',
            r'time slips? away',
            r'whispers? (fade|in the)',
            r'silence speaks',
            r'stars? shine',
            r'hearts? beat',
            r'footsteps (fade|echo)',
            r'gentle wind',
            r'(old|empty) (roads?|chair)',
            r'night (holds?|falls?)',
            r'memories fade',
            r'dreams (linger|drift)'
        ]
        
        cliche_count = 0
        for line in clean_lines:
            for pattern in cliched_patterns:
                if re.search(pattern, line.lower()):
                    cliche_count += 1
                    break
        
        # Calculate percentage of clichéd lines
        if clean_lines:
            cliche_percentage = (cliche_count / len(clean_lines)) * 100
        else:
            cliche_percentage = 0
            
        # 12. If we have lyric templates, ensure we have the correct number of lines
        if lyric_templates:
            num_required = len(lyric_templates)
            
            # If we have too many lines, keep just the best ones
            if len(clean_lines) > num_required:
                # Keep the first num_required lines
                clean_lines = clean_lines[:num_required]
            
            # If we don't have enough lines, generate placeholders that fit the syllable count
            while len(clean_lines) < num_required:
                i = len(clean_lines)
                if i < len(lyric_templates):
                    template = lyric_templates[i]
                    target_syllables = min(max_allowed_syllables - 1, (template.get('min_expected', 2) + template.get('max_expected', 6)) // 2)
                    
                    # Generate more creative, contextual placeholders with specificity
                    # Avoid clichés like "moonlight shimmers" or "time slips away"
                    specific_placeholders = {
                        # 2-3 syllables - specific, concrete phrases
                        2: [
                            "Phone rings twice", 
                            "Dogs bark loud", 
                            "Keys dropped here", 
                            "Train rolls by", 
                            "Birds take flight"
                        ],
                        # 3-4 syllables - specific contexts
                        3: [
                            "Coffee gets cold", 
                            "Fan blades spin", 
                            "Pages turn slow", 
                            "Neighbors talk", 
                            "Radio hums soft"
                        ],
                        # 4-5 syllables - specific details
                        4: [
                            "Fingers tap table", 
                            "Taxi waits in rain", 
                            "Laptop screen blinks", 
                            "Ring left on sink", 
                            "Church bells ring loud"
                        ],
                        # 5-6 syllables - context rich
                        5: [
                            "Letters with no stamps", 
                            "Watch shows wrong time", 
                            "Jeans with torn knees", 
                            "Dog barks next door", 
                            "Smoke alarm beeps"
                        ]
                    }
                    
                    # Make theme and emotion specific placeholders to add to the list
                    theme_specific = []
                    if theme.lower() in ["love", "relationship", "romance"]:
                        theme_specific = ["Lipstick on glass", "Text left on read", "Scent on your coat"]
                    elif theme.lower() in ["loss", "grief", "sadness"]:
                        theme_specific = ["Chair sits empty", "Photos face down", "Clothes in closet"]
                    elif theme.lower() in ["hope", "inspiration", "triumph"]:
                        theme_specific = ["Seeds start to grow", "Finish line waits", "New day breaks through"]
                    
                    # Get the closest matching syllable group
                    closest_group = min(specific_placeholders.keys(), key=lambda k: abs(k - target_syllables))
                    
                    # Create pool of available placeholders from both specific and theme specific options
                    all_placeholders = specific_placeholders[closest_group] + theme_specific
                    
                    # Choose a placeholder that hasn't been used yet
                    available_placeholders = [p for p in all_placeholders if p not in clean_lines]
                    
                    if available_placeholders:
                        # Use modulo for more variation
                        idx = (i * 17 + len(clean_lines) * 13) % len(available_placeholders)
                        placeholder = available_placeholders[idx]
                    else:
                        # If we've used all placeholders, create something random and specific
                        subjects = ["Car", "Dog", "Kid", "Clock", "Phone", "Tree", "Book", "Door", "Light"]
                        verbs = ["waits", "moves", "stops", "falls", "breaks", "turns", "sleeps"]
                        
                        # Ensure randomness with seed that changes with each call
                        import random
                        random.seed(len(clean_lines) * 27 + i * 31)
                        
                        subj = random.choice(subjects)
                        verb = random.choice(verbs)
                        
                        placeholder = f"{subj} {verb}"
                else:
                    placeholder = "Page turns slow"
                    
                clean_lines.append(placeholder)
        
        # Assemble final lyrics
        final_lyrics = '\n'.join(clean_lines)
        
        # Add a warning if we detected too many clichés
        if cliche_percentage >= 40:
            final_lyrics = f"""WARNING: These lyrics contain several overused phrases and clichés.
Try regenerating for more original content.

{final_lyrics}"""
            
        # 13. Final sanity check - if we have nothing or garbage, return an error
        if not final_lyrics or len(final_lyrics) < 10:
            return "The model generated only thinking content but no actual lyrics. Please try again."
        
        return final_lyrics
    
    except Exception as e:
        error_msg = f"Error generating lyrics: {str(e)}"
        print(error_msg)
        return error_msg

def analyze_lyrics_rhythm_match(lyrics, lyric_templates, genre="pop"):
    """Analyze how well the generated lyrics match the beat patterns and syllable requirements"""
    if not lyric_templates or not lyrics:
        return "No beat templates or lyrics available for analysis."
    
    # Split lyrics into lines
    lines = lyrics.strip().split('\n')
    lines = [line for line in lines if line.strip()]  # Remove empty lines
    
    # Prepare analysis result
    result = "### Beat & Syllable Match Analysis\n\n"
    result += "| Line | Syllables | Target Range | Match | Stress Pattern |\n"
    result += "| ---- | --------- | ------------ | ----- | -------------- |\n"
    
    # Maximum number of lines to analyze (either all lines or all templates)
    line_count = min(len(lines), len(lyric_templates))
    
    # Track overall match statistics
    total_matches = 0
    total_range_matches = 0
    total_stress_matches = 0
    total_stress_percentage = 0
    total_ideal_matches = 0
    
    for i in range(line_count):
        line = lines[i]
        template = lyric_templates[i]
        
        # Check match between line and template with genre awareness
        check_result = beat_analyzer.check_syllable_stress_match(line, template, genre)
        
        # Get match symbols
        if check_result["close_to_ideal"]:
            syllable_match = "✓"  # Ideal or very close
        elif check_result["within_range"]:
            syllable_match = "✓*"  # Within range but not ideal
        else:
            syllable_match = "✗"  # Outside range
            
        stress_match = "✓" if check_result["stress_matches"] else f"{int(check_result['stress_match_percentage']*100)}%"
        
        # Update stats
        if check_result["close_to_ideal"]:
            total_matches += 1
            total_ideal_matches += 1
        elif check_result["within_range"]:
            total_range_matches += 1
            
        if check_result["stress_matches"]:
            total_stress_matches += 1
        total_stress_percentage += check_result["stress_match_percentage"]
        
        # Create visual representation of the stress pattern
        stress_visual = ""
        for char in template['stress_pattern']:
            if char == "S":
                stress_visual += "X"  # Strong
            elif char == "M":
                stress_visual += "x"  # Medium
            else:
                stress_visual += "."  # Weak
        
        # Add line to results table
        result += f"| {i+1} | {check_result['syllable_count']} | {check_result['min_expected']}-{check_result['max_expected']} | {syllable_match} | {stress_visual} |\n"
    
    # Add summary statistics
    if line_count > 0:
        exact_match_rate = (total_matches / line_count) * 100
        range_match_rate = ((total_matches + total_range_matches) / line_count) * 100
        ideal_match_rate = (total_ideal_matches / line_count) * 100
        stress_match_rate = (total_stress_matches / line_count) * 100
        avg_stress_percentage = (total_stress_percentage / line_count) * 100
        
        result += f"\n**Summary:**\n"
        result += f"- Ideal or near-ideal syllable match rate: {exact_match_rate:.1f}%\n"
        result += f"- Genre-appropriate syllable range match rate: {range_match_rate:.1f}%\n"
        result += f"- Perfect stress pattern match rate: {stress_match_rate:.1f}%\n"
        result += f"- Average stress pattern accuracy: {avg_stress_percentage:.1f}%\n"
        result += f"- Overall rhythmic accuracy: {((range_match_rate + avg_stress_percentage) / 2):.1f}%\n"
        
        # Analyze sentence flow across lines
        sentence_flow_analysis = analyze_sentence_flow(lines)
        result += f"\n**Sentence Flow Analysis:**\n"
        result += f"- Connected thought groups: {sentence_flow_analysis['connected_groups']} detected\n"
        result += f"- Average lines per thought: {sentence_flow_analysis['avg_lines_per_group']:.1f}\n"
        result += f"- Flow quality: {sentence_flow_analysis['flow_quality']}\n"
        
        # Add guidance on ideal distribution for syllables and sentence flow
        result += f"\n**Syllable & Flow Guidance:**\n"
        result += f"- Aim for {min([t.get('min_expected', 3) for t in lyric_templates])}-{max([t.get('max_expected', 7) for t in lyric_templates])} syllables per line\n"
        result += f"- Break complete thoughts across 2-3 lines for natural flow\n"
        result += f"- Connect your lyrics with sentence fragments that flow across lines\n"
        result += f"- Use conjunctions, prepositions, and dependent clauses to connect lines\n"
        
        # Add genre-specific notes
        result += f"\n**Genre Notes ({genre}):**\n"
        
        # Add appropriate genre notes based on genre
        if genre.lower() == "pop":
            result += "- Pop lyrics work well with thoughts spanning 2-3 musical phrases\n"
            result += "- Create flow by connecting lines with transitions like 'as', 'when', 'through'\n"
        elif genre.lower() == "rock":
            result += "- Rock lyrics benefit from short phrases that build into complete thoughts\n"
            result += "- Use line breaks strategically to emphasize key words\n"
        elif genre.lower() == "country":
            result += "- Country lyrics tell stories that flow naturally across multiple lines\n"
            result += "- Connect narrative elements across phrases for authentic storytelling\n"
        elif genre.lower() == "disco":
            result += "- Disco lyrics work well with phrases that create rhythmic momentum\n"
            result += "- Use line transitions that maintain energy and flow\n"
        elif genre.lower() == "metal":
            result += "- Metal lyrics can create intensity by breaking phrases at dramatic points\n"
            result += "- Connect lines to build tension and release across measures\n"
        else:
            result += "- This genre works well with connected thoughts across multiple lines\n"
            result += "- Aim for natural speech flow rather than complete thoughts per line\n"
    
    return result

def analyze_sentence_flow(lines):
    """Analyze how well the lyrics create sentence flow across multiple lines"""
    if not lines or len(lines) < 2:
        return {
            "connected_groups": 0,
            "avg_lines_per_group": 0,
            "flow_quality": "Insufficient lines to analyze"
        }
    
    # Simplified analysis looking for grammatical clues of sentence continuation
    continuation_starters = [
        'and', 'but', 'or', 'nor', 'for', 'yet', 'so',  # Coordinating conjunctions
        'as', 'when', 'while', 'before', 'after', 'since', 'until', 'because', 'although', 'though',  # Subordinating conjunctions
        'with', 'without', 'through', 'throughout', 'beyond', 'beneath', 'under', 'over', 'into', 'onto',  # Prepositions
        'to', 'from', 'by', 'at', 'in', 'on', 'of',  # Common prepositions
        'where', 'how', 'who', 'whom', 'whose', 'which', 'that',  # Relative pronouns
        'if', 'then',  # Conditional connectors
    ]
    
    # Check for lines that likely continue a thought from previous line
    connected_lines = []
    potential_groups = []
    current_group = [0]  # Start with first line
    
    for i in range(1, len(lines)):
        # Check if line starts with a continuation word
        words = lines[i].lower().split()
        
        # Empty line or no words
        if not words:
            if len(current_group) > 1:  # Only consider groups of 2+ lines
                potential_groups.append(current_group.copy())
            current_group = [i]
            continue
            
        # Check first word for continuation clues
        first_word = words[0].strip(',.!?;:')
        if first_word in continuation_starters:
            connected_lines.append(i)
            current_group.append(i)
        # Check for absence of capitalization as continuation clue
        elif not first_word[0].isupper() and first_word[0].isalpha():
            connected_lines.append(i)
            current_group.append(i)
        # Check if current line is very short (likely part of a continued thought)
        elif len(words) <= 3 and i < len(lines) - 1:
            # Look ahead to see if next line could be a continuation
            if i+1 < len(lines):
                next_words = lines[i+1].lower().split()
                if next_words and next_words[0] in continuation_starters:
                    connected_lines.append(i)
                    current_group.append(i)
                else:
                    # This might end a group
                    if len(current_group) > 1:  # Only consider groups of 2+ lines
                        potential_groups.append(current_group.copy())
                    current_group = [i]
        else:
            # This likely starts a new thought
            if len(current_group) > 1:  # Only consider groups of 2+ lines
                potential_groups.append(current_group.copy())
            current_group = [i]
    
    # Add the last group if it has multiple lines
    if len(current_group) > 1:
        potential_groups.append(current_group)
    
    # Calculate metrics
    connected_groups = len(potential_groups)
    
    if connected_groups > 0:
        avg_lines_per_group = sum(len(group) for group in potential_groups) / connected_groups
        
        # Determine flow quality
        if connected_groups >= len(lines) / 3 and avg_lines_per_group >= 2.5:
            flow_quality = "Excellent - multiple connected thoughts across lines"
        elif connected_groups >= len(lines) / 4 and avg_lines_per_group >= 2:
            flow_quality = "Good - some connected thoughts across lines"
        elif connected_groups > 0:
            flow_quality = "Fair - limited connection between lines"
        else:
            flow_quality = "Poor - mostly independent lines"
    else:
        avg_lines_per_group = 0
        flow_quality = "Poor - no connected thoughts detected"
    
    return {
        "connected_groups": connected_groups,
        "avg_lines_per_group": avg_lines_per_group,
        "flow_quality": flow_quality
    }

def enforce_syllable_limits(lines, max_syllables=6):
    """
    Enforce syllable limits by splitting or truncating lines that are too long.
    Returns a modified list of lines where no line exceeds max_syllables.
    """
    if not lines:
        return []
    
    result_lines = []
    
    for line in lines:
        words = line.split()
        if not words:
            continue
            
        # Count syllables in the line
        syllable_count = sum(beat_analyzer.count_syllables(word) for word in words)
        
        # If within limits, keep the line as is
        if syllable_count <= max_syllables:
            result_lines.append(line)
            continue
            
        # Line is too long - we need to split or truncate it
        current_line = []
        current_syllables = 0
        
        for word in words:
            word_syllables = beat_analyzer.count_syllables(word)
            
            # If adding this word would exceed the limit, start a new line
            if current_syllables + word_syllables > max_syllables and current_line:
                result_lines.append(" ".join(current_line))
                current_line = [word]
                current_syllables = word_syllables
            else:
                # Add the word to the current line
                current_line.append(word)
                current_syllables += word_syllables
        
        # Don't forget the last line if there are words left
        if current_line:
            result_lines.append(" ".join(current_line))
    
    return result_lines

# Create Gradio interface
def create_interface():
    with gr.Blocks(title="Music Analysis & Lyrics Generator") as demo:
        gr.Markdown("# Music Analysis & Lyrics Generator")
        gr.Markdown("Upload a music file or record audio to analyze it and generate matching lyrics")
        
        with gr.Row():
            with gr.Column(scale=1):
                audio_input = gr.Audio(
                    label="Upload or Record Audio", 
                    type="filepath",
                    sources=["upload", "microphone"]
                )
                analyze_btn = gr.Button("Analyze and Generate Lyrics", variant="primary")
            
            with gr.Column(scale=2):
                with gr.Tab("Analysis"):
                    analysis_output = gr.Textbox(label="Music Analysis Results", lines=10)
                    
                    with gr.Row():
                        tempo_output = gr.Number(label="Tempo (BPM)")
                        time_sig_output = gr.Textbox(label="Time Signature")
                        emotion_output = gr.Textbox(label="Primary Emotion")
                        theme_output = gr.Textbox(label="Primary Theme")
                        genre_output = gr.Textbox(label="Primary Genre")
                
                with gr.Tab("Generated Lyrics"):
                    lyrics_output = gr.Textbox(label="Generated Lyrics", lines=20)
                
                with gr.Tab("Beat Matching"):
                    beat_match_output = gr.Markdown(label="Beat & Syllable Matching Analysis")
        
        # Set up event handlers
        analyze_btn.click(
            fn=process_audio,
            inputs=[audio_input],
            outputs=[analysis_output, lyrics_output, tempo_output, time_sig_output, 
                    emotion_output, theme_output, genre_output, beat_match_output]
        )
        
        # Format supported genres for display
        supported_genres_md = "\n".join([f"- {genre.capitalize()}" for genre in beat_analyzer.supported_genres])
        
        gr.Markdown(f"""
        ## How it works
        1. Upload or record a music file
        2. The system analyzes tempo, beats, time signature and other musical features
        3. It detects emotion, theme, and music genre
        4. Using beat patterns and syllable stress analysis, it generates perfectly aligned lyrics
        5. Each line of the lyrics is matched to the beat pattern of the corresponding musical phrase
        
        ## Supported Genres
        **Note:** Lyrics generation is currently only supported for the following genres:
        {supported_genres_md}
        
        These genres have consistent syllable-to-beat patterns that work well with our algorithm.
        For other genres, only music analysis will be provided.
        """)
    
    return demo

# Launch the app
demo = create_interface()

if __name__ == "__main__":
    demo.launch()
else:
    # For Hugging Face Spaces
    app = demo