root
syllables trying second
054fb90
raw
history blame
49.6 kB
import os
import io
import gradio as gr
import torch
import numpy as np
import re
import pronouncing # Add this to requirements.txt for syllable counting
from transformers import (
AutoModelForAudioClassification,
AutoFeatureExtractor,
AutoTokenizer,
pipeline,
AutoModelForCausalLM,
BitsAndBytesConfig
)
from huggingface_hub import login
from utils import (
load_audio,
extract_audio_duration,
extract_mfcc_features,
calculate_lyrics_length,
format_genre_results,
ensure_cuda_availability,
preprocess_audio_for_model
)
from emotionanalysis import MusicAnalyzer
import librosa
# Login to Hugging Face Hub if token is provided
if "HF_TOKEN" in os.environ:
login(token=os.environ["HF_TOKEN"])
# Constants
GENRE_MODEL_NAME = "dima806/music_genres_classification"
MUSIC_DETECTION_MODEL = "MIT/ast-finetuned-audioset-10-10-0.4593"
LLM_MODEL_NAME = "meta-llama/Llama-3.1-8B-Instruct"
SAMPLE_RATE = 22050 # Standard sample rate for audio processing
# Check CUDA availability (for informational purposes)
CUDA_AVAILABLE = ensure_cuda_availability()
# Create music detection pipeline
print(f"Loading music detection model: {MUSIC_DETECTION_MODEL}")
try:
music_detector = pipeline(
"audio-classification",
model=MUSIC_DETECTION_MODEL,
device=0 if CUDA_AVAILABLE else -1
)
print("Successfully loaded music detection pipeline")
except Exception as e:
print(f"Error creating music detection pipeline: {str(e)}")
# Fallback to manual loading
try:
music_processor = AutoFeatureExtractor.from_pretrained(MUSIC_DETECTION_MODEL)
music_model = AutoModelForAudioClassification.from_pretrained(MUSIC_DETECTION_MODEL)
print("Successfully loaded music detection model and feature extractor")
except Exception as e2:
print(f"Error loading music detection model components: {str(e2)}")
raise RuntimeError(f"Could not load music detection model: {str(e2)}")
# Create genre classification pipeline
print(f"Loading audio classification model: {GENRE_MODEL_NAME}")
try:
genre_classifier = pipeline(
"audio-classification",
model=GENRE_MODEL_NAME,
device=0 if CUDA_AVAILABLE else -1
)
print("Successfully loaded audio classification pipeline")
except Exception as e:
print(f"Error creating pipeline: {str(e)}")
# Fallback to manual loading
try:
genre_processor = AutoFeatureExtractor.from_pretrained(GENRE_MODEL_NAME)
genre_model = AutoModelForAudioClassification.from_pretrained(GENRE_MODEL_NAME)
print("Successfully loaded audio classification model and feature extractor")
except Exception as e2:
print(f"Error loading model components: {str(e2)}")
raise RuntimeError(f"Could not load genre classification model: {str(e2)}")
# Load LLM with appropriate quantization for T4 GPU
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
llm_model = AutoModelForCausalLM.from_pretrained(
LLM_MODEL_NAME,
device_map="auto",
quantization_config=bnb_config,
torch_dtype=torch.float16,
)
# Create LLM pipeline
llm_pipeline = pipeline(
"text-generation",
model=llm_model,
tokenizer=llm_tokenizer,
max_new_tokens=512,
)
# Initialize music emotion analyzer
music_analyzer = MusicAnalyzer()
# New function: Count syllables in text
def count_syllables(text):
"""Count syllables in a given text using the pronouncing library."""
words = re.findall(r'\b[a-zA-Z]+\b', text.lower())
syllable_count = 0
for word in words:
# Get pronunciations for the word
pronunciations = pronouncing.phones_for_word(word)
if pronunciations:
# Count syllables in the first pronunciation
syllable_count += pronouncing.syllable_count(pronunciations[0])
else:
# Fallback: estimate syllables based on vowel groups
vowels = "aeiouy"
count = 0
prev_is_vowel = False
for char in word:
is_vowel = char.lower() in vowels
if is_vowel and not prev_is_vowel:
count += 1
prev_is_vowel = is_vowel
if word.endswith('e'):
count -= 1
if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
count += 1
if count == 0:
count = 1
syllable_count += count
return syllable_count
def extract_audio_features(audio_file):
"""Extract audio features from an audio file."""
try:
# Load the audio file using utility function
y, sr = load_audio(audio_file, SAMPLE_RATE)
if y is None or sr is None:
raise ValueError("Failed to load audio data")
# Get audio duration in seconds
duration = extract_audio_duration(y, sr)
# Extract MFCCs for genre classification (may not be needed with the pipeline)
mfccs_mean = extract_mfcc_features(y, sr, n_mfcc=20)
return {
"features": mfccs_mean,
"duration": duration,
"waveform": y,
"sample_rate": sr,
"path": audio_file # Keep path for the pipeline
}
except Exception as e:
print(f"Error extracting audio features: {str(e)}")
raise ValueError(f"Failed to extract audio features: {str(e)}")
def classify_genre(audio_data):
"""Classify the genre of the audio using the loaded model."""
try:
# First attempt: Try using the pipeline if available
if 'genre_classifier' in globals():
results = genre_classifier(audio_data["path"])
# Transform pipeline results to our expected format
top_genres = [(result["label"], result["score"]) for result in results[:3]]
return top_genres
# Second attempt: Use manually loaded model components
elif 'genre_processor' in globals() and 'genre_model' in globals():
# Process audio input with feature extractor
inputs = genre_processor(
audio_data["waveform"],
sampling_rate=audio_data["sample_rate"],
return_tensors="pt"
)
with torch.no_grad():
outputs = genre_model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
# Get the top 3 genres
values, indices = torch.topk(predictions, 3)
# Map indices to genre labels
genre_labels = genre_model.config.id2label
top_genres = []
for i, (value, index) in enumerate(zip(values[0], indices[0])):
genre = genre_labels[index.item()]
confidence = value.item()
top_genres.append((genre, confidence))
return top_genres
else:
raise ValueError("No genre classification model available")
except Exception as e:
print(f"Error in genre classification: {str(e)}")
# Fallback: return a default genre if everything fails
return [("rock", 1.0)]
def detect_music(audio_data):
"""Detect if the audio is music using the MIT AST model."""
try:
# First attempt: Try using the pipeline if available
if 'music_detector' in globals():
results = music_detector(audio_data["path"])
# Look for music-related classes in the results
music_confidence = 0.0
for result in results:
label = result["label"].lower()
if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
music_confidence = max(music_confidence, result["score"])
return music_confidence >= 0.2, results
# Second attempt: Use manually loaded model components
elif 'music_processor' in globals() and 'music_model' in globals():
# Process audio input with feature extractor
inputs = music_processor(
audio_data["waveform"],
sampling_rate=audio_data["sample_rate"],
return_tensors="pt"
)
with torch.no_grad():
outputs = music_model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
# Get the top predictions
values, indices = torch.topk(predictions, 5)
# Map indices to labels
labels = music_model.config.id2label
# Check for music-related classes
music_confidence = 0.0
results = []
for i, (value, index) in enumerate(zip(values[0], indices[0])):
label = labels[index.item()].lower()
score = value.item()
results.append({"label": label, "score": score})
if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
music_confidence = max(music_confidence, score)
return music_confidence >= 0.2, results
else:
raise ValueError("No music detection model available")
except Exception as e:
print(f"Error in music detection: {str(e)}")
return False, []
# Enhanced detect_beats function for better rhythm analysis
def detect_beats(y, sr):
"""Detect beats and create a detailed rhythmic map of the audio."""
# Get tempo and beat frames
tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)
# Convert beat frames to time in seconds
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
# Calculate beat strength to identify strong and weak beats
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
beat_strengths = [onset_env[frame] for frame in beat_frames if frame < len(onset_env)]
# If we couldn't get strengths for all beats, use average for missing ones
if beat_strengths:
avg_strength = sum(beat_strengths) / len(beat_strengths)
while len(beat_strengths) < len(beat_times):
beat_strengths.append(avg_strength)
else:
beat_strengths = [1.0] * len(beat_times)
# Calculate time intervals between beats (for rhythm pattern detection)
intervals = []
for i in range(1, len(beat_times)):
intervals.append(beat_times[i] - beat_times[i-1])
# Try to detect time signature based on beat pattern
time_signature = 4 # Default assumption of 4/4 time
if len(beat_strengths) > 8:
strength_pattern = []
for i in range(0, len(beat_strengths), 2):
if i+1 < len(beat_strengths):
ratio = beat_strengths[i] / (beat_strengths[i+1] + 0.0001)
strength_pattern.append(ratio)
# Check if we have a clear 3/4 pattern (strong-weak-weak)
if strength_pattern:
three_pattern = sum(1 for r in strength_pattern if r > 1.2) / len(strength_pattern)
if three_pattern > 0.6:
time_signature = 3
# Group beats into phrases
phrases = []
current_phrase = []
for i in range(len(beat_times)):
current_phrase.append(i)
# Look for natural phrase boundaries
if i < len(beat_times) - 1:
is_stronger_next = False
if i < len(beat_strengths) - 1:
is_stronger_next = beat_strengths[i+1] > beat_strengths[i] * 1.2
is_longer_gap = False
if i < len(beat_times) - 1 and intervals:
current_gap = beat_times[i+1] - beat_times[i]
avg_gap = sum(intervals) / len(intervals)
is_longer_gap = current_gap > avg_gap * 1.3
if (is_stronger_next or is_longer_gap) and len(current_phrase) >= 2:
phrases.append(current_phrase)
current_phrase = []
# Add the last phrase if not empty
if current_phrase:
phrases.append(current_phrase)
return {
"tempo": tempo,
"beat_frames": beat_frames,
"beat_times": beat_times,
"beat_count": len(beat_times),
"beat_strengths": beat_strengths,
"intervals": intervals,
"time_signature": time_signature,
"phrases": phrases
}
def detect_sections(y, sr):
"""Detect sections (verse, chorus, etc.) in the audio."""
# Compute the spectral contrast
S = np.abs(librosa.stft(y))
contrast = librosa.feature.spectral_contrast(S=S, sr=sr)
# Compute the chroma features
chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
# Use a combination of contrast and chroma to find segment boundaries
# Average over frequency axis to get time series
contrast_avg = np.mean(contrast, axis=0)
chroma_avg = np.mean(chroma, axis=0)
# Normalize
contrast_avg = (contrast_avg - np.mean(contrast_avg)) / np.std(contrast_avg)
chroma_avg = (chroma_avg - np.mean(chroma_avg)) / np.std(chroma_avg)
# Combine features
combined = contrast_avg + chroma_avg
# Detect structural boundaries
bounds = librosa.segment.agglomerative(combined, 3) # Adjust for typical song structures
# Convert to time in seconds
bound_times = librosa.frames_to_time(bounds, sr=sr)
# Estimate section types based on position and length
sections = []
for i in range(len(bound_times) - 1):
start = bound_times[i]
end = bound_times[i+1]
duration = end - start
# Simple heuristic to label sections
if i == 0:
section_type = "intro"
elif i == len(bound_times) - 2:
section_type = "outro"
elif i % 2 == 1: # Alternating verse/chorus pattern
section_type = "chorus"
else:
section_type = "verse"
# If we have a short section in the middle, it might be a bridge
if 0 < i < len(bound_times) - 2 and duration < 20:
section_type = "bridge"
sections.append({
"type": section_type,
"start": start,
"end": end,
"duration": duration
})
return sections
# New function: Create flexible syllable templates
def create_flexible_syllable_templates(beats_info):
"""Create detailed syllable templates based on beat patterns, capturing stress patterns."""
# Get the beat times and strengths
beat_times = beats_info["beat_times"]
beat_strengths = beats_info.get("beat_strengths", [1.0] * len(beat_times))
phrases = beats_info.get("phrases", [])
tempo = beats_info.get("tempo", 120)
# If no phrases were detected, create a simple division
if not phrases:
# Default to 4-beat phrases
phrases = []
for i in range(0, len(beat_times), 4):
end_idx = min(i + 4, len(beat_times))
if end_idx - i >= 2: # Ensure at least 2 beats per phrase
phrases.append(list(range(i, end_idx)))
# Create enhanced syllable templates for each phrase
syllable_templates = []
for phrase in phrases:
# Extract beat strengths for this phrase
phrase_strengths = [beat_strengths[i] for i in phrase if i < len(beat_strengths)]
if not phrase_strengths:
phrase_strengths = [1.0] * len(phrase)
# Normalize strengths for easier pattern recognition
if phrase_strengths:
max_strength = max(phrase_strengths)
if max_strength > 0:
norm_strengths = [s/max_strength for s in phrase_strengths]
else:
norm_strengths = [1.0] * len(phrase_strengths)
else:
norm_strengths = []
# Identify strong and weak beats (S = strong, w = weak)
stress_pattern = []
for strength in norm_strengths:
if strength > 0.7:
stress_pattern.append("S") # Strong beat
elif strength > 0.4:
stress_pattern.append("m") # Medium beat
else:
stress_pattern.append("w") # Weak beat
# Calculate appropriate syllable count based on tempo and beat pattern
if tempo > 160:
# Very fast tempo - typically one syllable per beat
syllables_per_beat = [1] * len(phrase)
elif tempo > 120:
# Fast tempo
syllables_per_beat = [1 if s == "S" or s == "m" else 1 for s in stress_pattern]
elif tempo > 90:
# Medium tempo
syllables_per_beat = [2 if s == "S" else 1 if s == "m" else 1 for s in stress_pattern]
else:
# Slow tempo
syllables_per_beat = [2 if s == "S" else 2 if s == "m" else 1 for s in stress_pattern]
# Create a detailed template with stress information
detailed_template = []
for i, (stress, syllable_count) in enumerate(zip(stress_pattern, syllables_per_beat)):
if stress == "S":
# Mark strong beat with capital letter followed by syllable count
detailed_template.append(f"S{syllable_count}")
elif stress == "m":
# Mark medium beat with lowercase letter
detailed_template.append(f"m{syllable_count}")
else:
# Mark weak beat with lowercase letter
detailed_template.append(f"w{syllable_count}")
# Join all beat templates for this phrase
phrase_template = "-".join(detailed_template)
syllable_templates.append(phrase_template)
# Join all phrase templates
return "|".join(syllable_templates)
# Helper function to convert technical templates to human-readable instructions
def format_syllable_templates_for_prompt(syllable_templates):
"""Convert technical syllable templates into clear, human-readable instructions."""
if not syllable_templates:
return ""
# Check if we're dealing with the enhanced format or the old format
if isinstance(syllable_templates, str) and "|" in syllable_templates:
# Enhanced format with stress patterns
phrases = syllable_templates.split("|")
instructions = []
for i, phrase in enumerate(phrases):
beats = phrase.split("-")
beat_instructions = []
for beat in beats:
if beat.startswith("S"):
# Strong beat
count = beat[1:]
beat_instructions.append(f"STRONG({count})")
elif beat.startswith("m"):
# Medium beat
count = beat[1:]
beat_instructions.append(f"medium({count})")
elif beat.startswith("w"):
# Weak beat
count = beat[1:]
beat_instructions.append(f"weak({count})")
else:
# Fallback for old format
beat_instructions.append(beat)
line_desc = " → ".join(beat_instructions)
instructions.append(f"Line {i+1}: {line_desc}")
return "\n".join(instructions)
else:
# Handle the original format or segment dictionaries
formatted_lines = []
if isinstance(syllable_templates, list):
for i, template in enumerate(syllable_templates):
if isinstance(template, dict) and "syllable_template" in template:
formatted_lines.append(f"Line {i+1}: {template['syllable_template']} syllables")
elif isinstance(template, str):
formatted_lines.append(f"Line {i+1}: {template} syllables")
return "\n".join(formatted_lines)
return str(syllable_templates)
# Enhanced verification function to check syllable counts and stress patterns
def verify_flexible_syllable_counts(lyrics, templates):
"""Verify that the generated lyrics match the required syllable counts and stress patterns."""
# Split lyrics into lines
lines = [line.strip() for line in lyrics.split("\n") if line.strip()]
# Check syllable counts for each line
verification_notes = []
for i, line in enumerate(lines):
if i >= len(templates):
break
template = templates[i]
# Handle different template formats
if isinstance(template, dict) and "syllable_template" in template:
template_str = template["syllable_template"]
elif isinstance(template, str):
template_str = template
else:
continue
# Parse the enhanced template format if present
if "|" in template_str:
# This is a phrase, take just the first part for now
template_str = template_str.split("|")[0]
# Count expected syllables
total_expected = 0
# Handle the enhanced format with stress patterns
if "-" in template_str and any(x in template_str for x in ["S", "m", "w"]):
beats = template_str.split("-")
expected_counts = []
for beat in beats:
if beat.startswith(("S", "m", "w")):
try:
count = int(beat[1:])
expected_counts.append(count)
total_expected += count
except ValueError:
expected_counts.append(1)
total_expected += 1
else:
try:
count = int(beat)
expected_counts.append(count)
total_expected += count
except ValueError:
expected_counts.append(1)
total_expected += 1
else:
# Old format - simple numbers separated by hyphens
try:
expected_counts = [int(count) for count in template_str.split("-")]
total_expected = sum(expected_counts)
except ValueError:
# Fallback if we can't parse the template
expected_counts = []
total_expected = 0
# Count actual syllables
actual_count = count_syllables(line)
# Calculate difference
if total_expected > 0 and abs(actual_count - total_expected) > 2: # Allow small differences
verification_notes.append(f"Line {i+1}: Expected {total_expected} syllables, got {actual_count}")
# Additionally check if stressed syllables align with strong beats
words = re.findall(r'\b[a-zA-Z]+\b', line.lower())
if words and expected_counts and "S" in template_str:
# Try to find strong beats in the template
strong_beat_positions = []
current_pos = 0
for j, beat in enumerate(template_str.split("-")):
if beat.startswith("S"):
beat_count = int(beat[1:]) if len(beat) > 1 else 1
strong_beat_positions.append(current_pos)
current_pos += beat_count
else:
beat_count = int(beat[1:]) if len(beat) > 1 else 1
current_pos += beat_count
# Try to get pronunciations for words to check stress alignment
word_stresses = []
for word in words:
pronunciations = pronouncing.phones_for_word(word)
if pronunciations:
stress_pattern = pronouncing.stresses(pronunciations[0])
word_stresses.append(stress_pattern)
# Add note about stress alignment if we have enough information
if word_stresses and strong_beat_positions and len(word_stresses) >= len(strong_beat_positions):
verification_notes.append(f" → Check stress alignment on words with strong beats")
# If we found issues, add them as notes at the end of the lyrics
if verification_notes:
lyrics += "\n\n[Note: Potential rhythm mismatches in these lines:]\n"
lyrics += "\n".join(verification_notes)
lyrics += "\n\n[To fix mismatches:]\n"
lyrics += "1. Make sure stressed syllables fall on STRONG beats\n"
lyrics += "2. Adjust syllable counts to match the template\n"
lyrics += "3. Try using words with naturally aligned stress patterns"
return lyrics
# Modified generate_lyrics function
def generate_lyrics(genre, duration, emotion_results, song_structure=None):
"""Generate lyrics based on the genre, emotion, and structure analysis with enhanced rhythmic alignment."""
# Extract emotion and theme data from analysis results
primary_emotion = emotion_results["emotion_analysis"]["primary_emotion"]
primary_theme = emotion_results["theme_analysis"]["primary_theme"]
# Extract numeric values safely with fallbacks
try:
tempo = float(emotion_results["rhythm_analysis"]["tempo"])
except (KeyError, ValueError, TypeError):
tempo = 0.0
key = emotion_results["tonal_analysis"]["key"]
mode = emotion_results["tonal_analysis"]["mode"]
# Format syllable templates for the prompt
syllable_guidance = ""
templates_for_verification = []
if song_structure:
# Try to use flexible structure if available
if "flexible_structure" in song_structure and song_structure["flexible_structure"]:
flexible = song_structure["flexible_structure"]
if "segments" in flexible and flexible["segments"]:
# Get the segments
segments = flexible["segments"]
# Process each segment to create enhanced rhythmic templates
enhanced_templates = []
for i, segment in enumerate(segments):
if i < 15: # Limit to 15 lines to keep prompt manageable
# Get the beat information for this segment
segment_start = segment["start"]
segment_end = segment["end"]
# Find beats within this segment
segment_beats = []
beat_times = flexible["beats"]["beat_times"]
beat_strengths = flexible["beats"].get("beat_strengths", [])
for j, beat_time in enumerate(beat_times):
if segment_start <= beat_time < segment_end:
# Add this beat to the segment
segment_beats.append(j)
# Create segment-specific beat info
segment_beats_info = {
"beat_times": [beat_times[j] for j in segment_beats],
"tempo": flexible["beats"].get("tempo", 120)
}
if beat_strengths:
segment_beats_info["beat_strengths"] = [
beat_strengths[j] for j in segment_beats
if j < len(beat_strengths)
]
# Create a phrase structure for this segment
segment_beats_info["phrases"] = [segment_beats]
# Generate enhanced template
enhanced_template = create_flexible_syllable_templates(segment_beats_info)
enhanced_templates.append(enhanced_template)
templates_for_verification.append(enhanced_template)
# Format templates for the prompt
syllable_guidance = "CRITICAL RHYTHM INSTRUCTIONS:\n"
syllable_guidance += "Match each line exactly to this rhythm pattern (STRONG beats need stressed syllables):\n\n"
syllable_guidance += format_syllable_templates_for_prompt(enhanced_templates)
# Add explanation of notation
syllable_guidance += "\n\nWhere:\n"
syllable_guidance += "- STRONG(n): Place a STRESSED syllable here, followed by (n-1) unstressed syllables\n"
syllable_guidance += "- medium(n): Place a medium-stressed or unstressed syllable here, followed by (n-1) unstressed syllables\n"
syllable_guidance += "- weak(n): Place unstressed syllables here\n"
syllable_guidance += "- →: Indicates flow from one beat to the next within a line\n"
# Fallback to traditional sections if needed
elif "syllables" in song_structure and song_structure["syllables"]:
syllable_guidance = "RHYTHM PATTERN INSTRUCTIONS:\n"
syllable_guidance += "Follow these syllable patterns for each section:\n\n"
for section in song_structure["syllables"]:
if "syllable_template" in section:
# Process to create enhanced template
section_beats_info = {
"beat_times": [beat for beat in song_structure["beats"]["beat_times"]
if section["start"] <= beat < section["end"]],
"tempo": song_structure["beats"].get("tempo", 120)
}
if "beat_strengths" in song_structure["beats"]:
section_beats_info["beat_strengths"] = [
strength for i, strength in enumerate(song_structure["beats"]["beat_strengths"])
if i < len(song_structure["beats"]["beat_times"]) and
section["start"] <= song_structure["beats"]["beat_times"][i] < section["end"]
]
# Create a phrase structure for this section
section_beats_info["phrases"] = [list(range(len(section_beats_info["beat_times"])))]
# Generate enhanced template
enhanced_template = create_flexible_syllable_templates(section_beats_info)
syllable_guidance += f"[{section['type'].capitalize()}]:\n"
syllable_guidance += format_syllable_templates_for_prompt(enhanced_template) + "\n\n"
templates_for_verification.append(section)
elif "syllable_count" in section:
syllable_guidance += f"[{section['type'].capitalize()}]: ~{section['syllable_count']} syllables total\n"
# If we couldn't get specific templates, use general guidance
if not syllable_guidance:
syllable_guidance = "RHYTHM ALIGNMENT INSTRUCTIONS:\n\n"
syllable_guidance += "1. Align stressed syllables with strong beats (usually beats 1 and 3 in 4/4 time)\n"
syllable_guidance += "2. Use unstressed syllables on weak beats (usually beats 2 and 4 in 4/4 time)\n"
syllable_guidance += "3. Use appropriate syllable counts based on tempo:\n"
syllable_guidance += " - Fast tempo (>120 BPM): 4-6 syllables per line\n"
syllable_guidance += " - Medium tempo (90-120 BPM): 6-8 syllables per line\n"
syllable_guidance += " - Slow tempo (<90 BPM): 8-10 syllables per line\n"
# Add examples of syllable-beat alignment with stress patterns
syllable_guidance += "\nEXAMPLES OF PERFECT RHYTHM ALIGNMENT:\n"
syllable_guidance += "Pattern: STRONG(1) → weak(1) → medium(1) → weak(1)\n"
syllable_guidance += "Lyric: 'HEAR the MU-sic PLAY'\n"
syllable_guidance += " ↑ ↑ ↑ ↑\n"
syllable_guidance += " S w m w <- BEAT TYPE\n\n"
syllable_guidance += "Pattern: STRONG(2) → weak(1) → STRONG(1) → weak(2)\n"
syllable_guidance += "Lyric: 'DANC-ing TO the RHYTHM of LOVE'\n"
syllable_guidance += " ↑ ↑ ↑ ↑ ↑ ↑\n"
syllable_guidance += " S S w S w w <- BEAT TYPE\n\n"
syllable_guidance += "Pattern: STRONG(1) → medium(2) → STRONG(1) → weak(1)\n"
syllable_guidance += "Lyric: 'TIME keeps FLOW-ing ON and ON'\n"
syllable_guidance += " ↑ ↑ ↑ ↑ ↑ ↑\n"
syllable_guidance += " S m m S w w <- BEAT TYPE\n\n"
# Determine if we should use traditional sections or not
use_sections = True
if song_structure and "flexible_structure" in song_structure and song_structure["flexible_structure"]:
# If we have more than 4 segments, it's likely not a traditional song structure
if "segments" in song_structure["flexible_structure"]:
segments = song_structure["flexible_structure"]["segments"]
if len(segments) > 4:
use_sections = False
# Calculate appropriate lyrics length and section distribution
try:
if song_structure and "beats" in song_structure:
beats_info = song_structure["beats"]
tempo = beats_info.get("tempo", 120)
time_signature = beats_info.get("time_signature", 4)
lines_structure = calculate_lyrics_length(duration, tempo, time_signature)
# Handle both possible return types
if isinstance(lines_structure, dict):
total_lines = lines_structure["lines_count"]
# Extract section line counts if available
verse_lines = 0
chorus_lines = 0
bridge_lines = 0
for section in lines_structure["sections"]:
if section["type"] == "verse":
verse_lines = section["lines"]
elif section["type"] == "chorus":
chorus_lines = section["lines"]
elif section["type"] == "bridge":
bridge_lines = section["lines"]
else:
# The function returned just an integer (old behavior)
total_lines = lines_structure
# Default section distribution based on total lines
if total_lines <= 6:
verse_lines = 2
chorus_lines = 2
bridge_lines = 0
elif total_lines <= 10:
verse_lines = 3
chorus_lines = 2
bridge_lines = 0
else:
verse_lines = 3
chorus_lines = 2
bridge_lines = 2
else:
# Fallback to simple calculation
total_lines = max(4, int(duration / 10))
# Default section distribution
if total_lines <= 6:
verse_lines = 2
chorus_lines = 2
bridge_lines = 0
elif total_lines <= 10:
verse_lines = 3
chorus_lines = 2
bridge_lines = 0
else:
verse_lines = 3
chorus_lines = 2
bridge_lines = 2
except Exception as e:
print(f"Error calculating lyrics length: {str(e)}")
total_lines = max(4, int(duration / 10))
# Default section distribution
verse_lines = 3
chorus_lines = 2
bridge_lines = 0
# Create enhanced prompt with better rhythm alignment instructions
if use_sections:
# Traditional approach with sections
prompt = f"""
You are a talented songwriter who specializes in {genre} music.
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.
Music analysis has detected the following qualities in the music:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}
{syllable_guidance}
CRITICAL PRINCIPLES FOR RHYTHMIC ALIGNMENT:
1. STRESSED syllables MUST fall on STRONG beats (marked with STRONG in the pattern)
2. Natural word stress patterns must match the beat strength (strong words on strong beats)
3. Line breaks should occur at phrase endings for natural breathing
4. Consonant clusters should be avoided on fast notes and strong beats
5. Open vowels (a, e, o) work better for sustained notes and syllables
The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Be approximately {total_lines} lines long
- Follow this structure:
* Verse: {verse_lines} lines
* Chorus: {chorus_lines} lines
* {f'Bridge: {bridge_lines} lines' if bridge_lines > 0 else ''}
- Be completely original
- Match the song duration of {duration:.1f} seconds
Your lyrics:
"""
else:
# Flexible approach without traditional sections
prompt = f"""
You are a talented songwriter who specializes in {genre} music.
Write original lyrics that match the rhythm of a {genre} music segment that is {duration:.1f} seconds long.
Music analysis has detected the following qualities:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}
{syllable_guidance}
CRITICAL PRINCIPLES FOR RHYTHMIC ALIGNMENT:
1. STRESSED syllables MUST fall on STRONG beats (marked with STRONG in the pattern)
2. Natural word stress patterns must match the beat strength (strong words on strong beats)
3. Line breaks should occur at phrase endings for natural breathing
4. Consonant clusters should be avoided on fast notes and strong beats
5. Open vowels (a, e, o) work better for sustained notes and syllables
For perfect alignment examples:
- "FEEL the RHY-thm in your SOUL" – stressed syllables on strong beats
- "to-DAY we DANCE a-LONG" – natural speech stress matches musical stress
- "WAIT-ing FOR the SUN to RISE" – syllable emphasis aligns with beat emphasis
The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Be completely original
- Maintain a consistent theme throughout
- Match the audio segment duration of {duration:.1f} seconds
DON'T include any section labels like [Verse] or [Chorus] unless specifically instructed.
Instead, write lyrics that flow naturally and match the music's rhythm precisely.
Your lyrics:
"""
# Generate lyrics using the LLM
response = llm_pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1,
return_full_text=False
)
# Extract and clean generated lyrics
lyrics = response[0]["generated_text"].strip()
# Verify syllable counts if we have templates
if templates_for_verification:
lyrics = verify_flexible_syllable_counts(lyrics, templates_for_verification)
# Add section labels if they're not present and we're using the traditional approach
if use_sections and "Verse" not in lyrics and "Chorus" not in lyrics:
lines = lyrics.split('\n')
formatted_lyrics = []
line_count = 0
for i, line in enumerate(lines):
if not line.strip():
formatted_lyrics.append(line)
continue
if line_count == 0:
formatted_lyrics.append("[Verse]")
elif line_count == verse_lines:
formatted_lyrics.append("\n[Chorus]")
elif line_count == verse_lines + chorus_lines and bridge_lines > 0:
formatted_lyrics.append("\n[Bridge]")
formatted_lyrics.append(line)
line_count += 1
lyrics = '\n'.join(formatted_lyrics)
return lyrics
def process_audio(audio_file):
"""Main function to process audio file, classify genre, and generate lyrics."""
if audio_file is None:
return "Please upload an audio file.", None, None
try:
# Extract audio features
audio_data = extract_audio_features(audio_file)
# First check if it's music
try:
is_music, ast_results = detect_music(audio_data)
except Exception as e:
print(f"Error in music detection: {str(e)}")
return f"Error in music detection: {str(e)}", None, ast_results
if not is_music:
return "The uploaded audio does not appear to be music. Please upload a music file.", None, ast_results
# Classify genre
try:
top_genres = classify_genre(audio_data)
# Format genre results using utility function
genre_results = format_genre_results(top_genres)
except Exception as e:
print(f"Error in genre classification: {str(e)}")
return f"Error in genre classification: {str(e)}", None, ast_results
# Analyze music emotions and themes
try:
emotion_results = music_analyzer.analyze_music(audio_file)
except Exception as e:
print(f"Error in emotion analysis: {str(e)}")
# Continue even if emotion analysis fails
emotion_results = {
"emotion_analysis": {"primary_emotion": "Unknown"},
"theme_analysis": {"primary_theme": "Unknown"},
"rhythm_analysis": {"tempo": 0},
"tonal_analysis": {"key": "Unknown", "mode": ""},
"summary": {"tempo": 0, "key": "Unknown", "mode": "", "primary_emotion": "Unknown", "primary_theme": "Unknown"}
}
# Calculate detailed song structure for better lyrics alignment
try:
song_structure = calculate_detailed_song_structure(audio_data)
except Exception as e:
print(f"Error analyzing song structure: {str(e)}")
# Continue with a simpler approach if this fails
song_structure = None
# Generate lyrics based on top genre, emotion analysis, and song structure
try:
primary_genre, _ = top_genres[0]
lyrics = generate_lyrics(primary_genre, audio_data["duration"], emotion_results, song_structure)
except Exception as e:
print(f"Error generating lyrics: {str(e)}")
lyrics = f"Error generating lyrics: {str(e)}"
return genre_results, lyrics, ast_results
except Exception as e:
error_msg = f"Error processing audio: {str(e)}"
print(error_msg)
return error_msg, None, []
# Create Gradio interface
with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
gr.Markdown("# Music Genre Classifier & Lyrics Generator")
gr.Markdown("Upload a music file to classify its genre, analyze its emotions, and generate matching lyrics.")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(label="Upload Music", type="filepath")
submit_btn = gr.Button("Analyze & Generate")
with gr.Column():
genre_output = gr.Textbox(label="Detected Genres", lines=5)
emotion_output = gr.Textbox(label="Emotion Analysis", lines=5)
ast_output = gr.Textbox(label="Audio Classification Results (AST)", lines=5)
lyrics_output = gr.Textbox(label="Generated Lyrics", lines=15)
def display_results(audio_file):
if audio_file is None:
return "Please upload an audio file.", "No emotion analysis available.", "No audio classification available.", None
try:
# Process audio and get genre, lyrics, and AST results
genre_results, lyrics, ast_results = process_audio(audio_file)
# Check if we got an error message instead of results
if isinstance(genre_results, str) and genre_results.startswith("Error"):
return genre_results, "Error in emotion analysis", "Error in audio classification", None
# Format emotion analysis results
try:
emotion_results = music_analyzer.analyze_music(audio_file)
emotion_text = f"Tempo: {emotion_results['summary']['tempo']:.1f} BPM\n"
emotion_text += f"Key: {emotion_results['summary']['key']} {emotion_results['summary']['mode']}\n"
emotion_text += f"Primary Emotion: {emotion_results['summary']['primary_emotion']}\n"
emotion_text += f"Primary Theme: {emotion_results['summary']['primary_theme']}"
# Add detailed song structure information if available
try:
audio_data = extract_audio_features(audio_file)
song_structure = calculate_detailed_song_structure(audio_data)
emotion_text += "\n\nSong Structure:\n"
for section in song_structure["syllables"]:
emotion_text += f"- {section['type'].capitalize()}: {section['start']:.1f}s to {section['end']:.1f}s "
emotion_text += f"({section['duration']:.1f}s, {section['beat_count']} beats, "
if "syllable_template" in section:
emotion_text += f"template: {section['syllable_template']})\n"
else:
emotion_text += f"~{section['syllable_count']} syllables)\n"
# Add flexible structure info if available
if "flexible_structure" in song_structure and song_structure["flexible_structure"]:
flexible = song_structure["flexible_structure"]
if "segments" in flexible and flexible["segments"]:
emotion_text += "\nDetailed Rhythm Analysis:\n"
for i, segment in enumerate(flexible["segments"][:5]): # Show first 5 segments
emotion_text += f"- Segment {i+1}: {segment['start']:.1f}s to {segment['end']:.1f}s, "
emotion_text += f"pattern: {segment['syllable_template']}\n"
if len(flexible["segments"]) > 5:
emotion_text += f" (+ {len(flexible['segments']) - 5} more segments)\n"
except Exception as e:
print(f"Error displaying song structure: {str(e)}")
# Continue without showing structure details
except Exception as e:
print(f"Error in emotion analysis: {str(e)}")
emotion_text = f"Error in emotion analysis: {str(e)}"
# Format AST classification results
if ast_results and isinstance(ast_results, list):
ast_text = "Audio Classification Results (AST Model):\n"
for result in ast_results[:5]: # Show top 5 results
ast_text += f"{result['label']}: {result['score']*100:.2f}%\n"
else:
ast_text = "No valid audio classification results available."
return genre_results, emotion_text, ast_text, lyrics
except Exception as e:
error_msg = f"Error: {str(e)}"
print(error_msg)
return error_msg, "Error in emotion analysis", "Error in audio classification", None
submit_btn.click(
fn=display_results,
inputs=[audio_input],
outputs=[genre_output, emotion_output, ast_output, lyrics_output]
)
gr.Markdown("### How it works")
gr.Markdown("""
1. Upload an audio file of your choice
2. The system will classify the genre using the dima806/music_genres_classification model
3. The system will analyze the musical emotion and theme using advanced audio processing
4. The system will identify the song structure, beats, and timing patterns
5. The system will create syllable templates that precisely match the rhythm of the music
6. Based on the detected genre, emotion, and syllable templates, it will generate lyrics that align perfectly with the beats
7. The system verifies syllable counts to ensure the generated lyrics can be sung naturally with the music
""")
# Launch the app
demo.launch()