root
ss
370bf23
raw
history blame
9.72 kB
import os
import io
import gradio as gr
import torch
import numpy as np
import re
import pronouncing # Add this to requirements.txt for syllable counting
import functools # Add this for lru_cache functionality
from transformers import (
AutoModelForAudioClassification,
AutoFeatureExtractor,
AutoTokenizer,
pipeline,
AutoModelForCausalLM,
BitsAndBytesConfig
)
from huggingface_hub import login
from utils import (
load_audio,
extract_audio_duration,
extract_mfcc_features,
format_genre_results,
ensure_cuda_availability
)
from emotionanalysis import MusicAnalyzer
import librosa
# Login to Hugging Face Hub if token is provided
if "HF_TOKEN" in os.environ:
login(token=os.environ["HF_TOKEN"])
# Constants
GENRE_MODEL_NAME = "dima806/music_genres_classification"
MUSIC_DETECTION_MODEL = "MIT/ast-finetuned-audioset-10-10-0.4593"
LLM_MODEL_NAME = "Qwen/Qwen3-32B"
SAMPLE_RATE = 22050 # Standard sample rate for audio processing
# Check CUDA availability (for informational purposes)
CUDA_AVAILABLE = ensure_cuda_availability()
# Load models
@functools.lru_cache(maxsize=1)
def load_genre_model():
print("Loading genre classification model...")
return pipeline(
"audio-classification",
model=GENRE_MODEL_NAME,
device=0 if CUDA_AVAILABLE else -1
)
@functools.lru_cache(maxsize=1)
def load_llm_pipeline():
print("Loading Qwen LLM model with 4-bit quantization...")
# Configure 4-bit quantization for better performance
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True
)
return pipeline(
"text-generation",
model=LLM_MODEL_NAME,
device_map="auto",
trust_remote_code=True,
model_kwargs={
"torch_dtype": torch.float16,
"quantization_config": quantization_config,
"use_cache": True
}
)
# Create music analyzer instance
music_analyzer = MusicAnalyzer()
# Process uploaded audio file
def process_audio(audio_file):
if audio_file is None:
return "No audio file provided", None, None, None, None, None, None
try:
# Load and analyze audio
y, sr = load_audio(audio_file, sr=SAMPLE_RATE)
# Basic audio information
duration = extract_audio_duration(y, sr)
# Analyze music with MusicAnalyzer
music_analysis = music_analyzer.analyze_music(audio_file)
# Extract key information
tempo = music_analysis["rhythm_analysis"]["tempo"]
time_signature = music_analysis["rhythm_analysis"]["estimated_time_signature"]
emotion = music_analysis["emotion_analysis"]["primary_emotion"]
theme = music_analysis["theme_analysis"]["primary_theme"]
# Use genre classification pipeline
genre_classifier = load_genre_model()
# Resample audio to 16000 Hz for the genre model
y_16k = librosa.resample(y, orig_sr=sr, target_sr=16000)
# Classify genre
genre_results = genre_classifier({"raw": y_16k, "sampling_rate": 16000})
# Get top genres
top_genres = [(genre["label"], genre["score"]) for genre in genre_results]
# Format genre results for display
genre_results_text = format_genre_results(top_genres)
primary_genre = top_genres[0][0]
# Generate lyrics using LLM
lyrics = generate_lyrics(music_analysis, primary_genre, duration)
# Prepare analysis summary
analysis_summary = f"""
### Music Analysis Results
**Duration:** {duration:.2f} seconds
**Tempo:** {tempo:.1f} BPM
**Time Signature:** {time_signature}
**Key:** {music_analysis["tonal_analysis"]["key"]} {music_analysis["tonal_analysis"]["mode"]}
**Primary Emotion:** {emotion}
**Primary Theme:** {theme}
**Top Genre:** {primary_genre}
{genre_results_text}
"""
return analysis_summary, lyrics, tempo, time_signature, emotion, theme, primary_genre
except Exception as e:
error_msg = f"Error processing audio: {str(e)}"
print(error_msg)
return error_msg, None, None, None, None, None, None
def generate_lyrics(music_analysis, genre, duration):
try:
# Extract meaningful information for context
tempo = music_analysis["rhythm_analysis"]["tempo"]
key = music_analysis["tonal_analysis"]["key"]
mode = music_analysis["tonal_analysis"]["mode"]
emotion = music_analysis["emotion_analysis"]["primary_emotion"]
theme = music_analysis["theme_analysis"]["primary_theme"]
# Load LLM pipeline
text_generator = load_llm_pipeline()
# Construct prompt for the LLM
prompt = f"""Write lyrics for a {genre} song with these specifications:
- Key: {key} {mode}
- Tempo: {tempo} BPM
- Emotion: {emotion}
- Theme: {theme}
- Duration: {duration:.1f} seconds
- Time signature: {music_analysis["rhythm_analysis"]["estimated_time_signature"]}
IMPORTANT INSTRUCTIONS:
- The lyrics should be in English
- Write ONLY the raw lyrics with no structural labels
- DO NOT include [verse], [chorus], [bridge], or any other section markers
- DO NOT include any explanations or thinking about the lyrics
- DO NOT number the verses or lines
- DO NOT use bullet points
- Format as simple line-by-line lyrics only
- Make sure the lyrics match the specified duration and tempo
- Keep lyrics concise enough to fit the duration when sung at the given tempo
"""
# Generate lyrics using the LLM pipeline
generation_result = text_generator(
prompt,
max_new_tokens=1024,
do_sample=True,
temperature=0.7,
top_p=0.9,
return_full_text=False
)
lyrics = generation_result[0]["generated_text"]
# Enhanced post-processing to remove ALL structural elements and thinking
# Remove any lines with section labels using a more comprehensive pattern
lyrics = re.sub(r'^\[.*?\].*$', '', lyrics, flags=re.MULTILINE)
# Remove common prefixes and thinking text
lyrics = re.sub(r'^(Here are|Here is|These are|This is|Let me|I will|I'll).*?:\s*', '', lyrics, flags=re.IGNORECASE)
lyrics = re.sub(r'^Title:.*?$', '', lyrics, flags=re.MULTILINE).strip()
# Remove all section markers in any format
lyrics = re.sub(r'^\s*(Verse|Chorus|Bridge|Pre.?Chorus|Intro|Outro|Refrain|Hook|Breakdown)(\s*\d*|\s*[A-Z])?:?\s*$', '', lyrics, flags=re.MULTILINE|re.IGNORECASE)
lyrics = re.sub(r'\[(Verse|Chorus|Bridge|Pre.?Chorus|Intro|Outro|Refrain|Hook|Breakdown)(\s*\d*|\s*[A-Z])?\]', '', lyrics, flags=re.IGNORECASE)
# Remove any "thinking" or explanatory parts that might be at the beginning
lyrics = re.sub(r'^.*?(Let\'s|Here\'s|I need|I want|I\'ll|First|The|This).*?:\s*', '', lyrics, flags=re.IGNORECASE)
# Remove any empty lines at beginning, collapse multiple blank lines, and trim
lyrics = re.sub(r'^\s*\n', '', lyrics)
lyrics = re.sub(r'\n\s*\n\s*\n+', '\n\n', lyrics)
lyrics = lyrics.strip()
return lyrics
except Exception as e:
error_msg = f"Error generating lyrics: {str(e)}"
print(error_msg)
return error_msg
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Music Analysis & Lyrics Generator") as demo:
gr.Markdown("# Music Analysis & Lyrics Generator")
gr.Markdown("Upload a music file or record audio to analyze it and generate matching lyrics")
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.Audio(
label="Upload or Record Audio",
type="filepath",
sources=["upload", "microphone"]
)
analyze_btn = gr.Button("Analyze and Generate Lyrics", variant="primary")
with gr.Column(scale=2):
with gr.Tab("Analysis"):
analysis_output = gr.Textbox(label="Music Analysis Results", lines=10)
with gr.Row():
tempo_output = gr.Number(label="Tempo (BPM)")
time_sig_output = gr.Textbox(label="Time Signature")
emotion_output = gr.Textbox(label="Primary Emotion")
theme_output = gr.Textbox(label="Primary Theme")
genre_output = gr.Textbox(label="Primary Genre")
with gr.Tab("Generated Lyrics"):
lyrics_output = gr.Textbox(label="Generated Lyrics", lines=20)
# Set up event handlers
analyze_btn.click(
fn=process_audio,
inputs=[audio_input],
outputs=[analysis_output, lyrics_output, tempo_output, time_sig_output,
emotion_output, theme_output, genre_output]
)
gr.Markdown("""
## How it works
1. Upload or record a music file
2. The system analyzes tempo, beats, time signature and other musical features
3. It detects emotion, theme, and music genre
4. Using this information, it generates lyrics that match the style and length of your music
""")
return demo
# Launch the app
demo = create_interface()
if __name__ == "__main__":
demo.launch()
else:
# For Hugging Face Spaces
app = demo