root
ss
5b33796
raw
history blame
8.8 kB
import os
import io
import gradio as gr
import torch
import numpy as np
import re
import pronouncing # Add this to requirements.txt for syllable counting
import functools # Add this for lru_cache functionality
from transformers import (
AutoModelForAudioClassification,
AutoFeatureExtractor,
AutoTokenizer,
pipeline,
AutoModelForCausalLM,
BitsAndBytesConfig
)
from huggingface_hub import login
from utils import (
load_audio,
extract_audio_duration,
extract_mfcc_features,
format_genre_results,
ensure_cuda_availability
)
from emotionanalysis import MusicAnalyzer
import librosa
# Login to Hugging Face Hub if token is provided
if "HF_TOKEN" in os.environ:
login(token=os.environ["HF_TOKEN"])
# Constants
GENRE_MODEL_NAME = "dima806/music_genres_classification"
MUSIC_DETECTION_MODEL = "MIT/ast-finetuned-audioset-10-10-0.4593"
LLM_MODEL_NAME = "Qwen/Qwen3-32B"
SAMPLE_RATE = 22050 # Standard sample rate for audio processing
# Check CUDA availability (for informational purposes)
CUDA_AVAILABLE = ensure_cuda_availability()
# Load models
@functools.lru_cache(maxsize=1)
def load_genre_model():
print("Loading genre classification model...")
return pipeline(
"audio-classification",
model=GENRE_MODEL_NAME,
device=0 if CUDA_AVAILABLE else -1
)
@functools.lru_cache(maxsize=1)
def load_llm_pipeline():
print("Loading Qwen LLM model with 4-bit quantization...")
# Configure 4-bit quantization for better performance
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True
)
return pipeline(
"text-generation",
model=LLM_MODEL_NAME,
device_map="auto",
trust_remote_code=True,
model_kwargs={
"torch_dtype": torch.float16,
"quantization_config": quantization_config,
"use_cache": True
}
)
# Create music analyzer instance
music_analyzer = MusicAnalyzer()
# Process uploaded audio file
def process_audio(audio_file):
if audio_file is None:
return "No audio file provided", None, None, None, None, None, None
try:
# Load and analyze audio
y, sr = load_audio(audio_file, sr=SAMPLE_RATE)
# Basic audio information
duration = extract_audio_duration(y, sr)
# Analyze music with MusicAnalyzer
music_analysis = music_analyzer.analyze_music(audio_file)
# Extract key information
tempo = music_analysis["rhythm_analysis"]["tempo"]
time_signature = music_analysis["rhythm_analysis"]["estimated_time_signature"]
emotion = music_analysis["emotion_analysis"]["primary_emotion"]
theme = music_analysis["theme_analysis"]["primary_theme"]
# Use genre classification pipeline
genre_classifier = load_genre_model()
# Resample audio to 16000 Hz for the genre model
y_16k = librosa.resample(y, orig_sr=sr, target_sr=16000)
# Classify genre
genre_results = genre_classifier({"raw": y_16k, "sampling_rate": 16000})
# Get top genres
top_genres = [(genre["label"], genre["score"]) for genre in genre_results]
# Format genre results for display
genre_results_text = format_genre_results(top_genres)
primary_genre = top_genres[0][0]
# Generate lyrics using LLM
lyrics = generate_lyrics(music_analysis, primary_genre, duration)
# Prepare analysis summary
analysis_summary = f"""
### Music Analysis Results
**Duration:** {duration:.2f} seconds
**Tempo:** {tempo:.1f} BPM
**Time Signature:** {time_signature}
**Key:** {music_analysis["tonal_analysis"]["key"]} {music_analysis["tonal_analysis"]["mode"]}
**Primary Emotion:** {emotion}
**Primary Theme:** {theme}
**Top Genre:** {primary_genre}
{genre_results_text}
"""
return analysis_summary, lyrics, tempo, time_signature, emotion, theme, primary_genre
except Exception as e:
error_msg = f"Error processing audio: {str(e)}"
print(error_msg)
return error_msg, None, None, None, None, None, None
def generate_lyrics(music_analysis, genre, duration):
try:
# Extract meaningful information for context
tempo = music_analysis["rhythm_analysis"]["tempo"]
key = music_analysis["tonal_analysis"]["key"]
mode = music_analysis["tonal_analysis"]["mode"]
emotion = music_analysis["emotion_analysis"]["primary_emotion"]
theme = music_analysis["theme_analysis"]["primary_theme"]
# Load LLM pipeline
text_generator = load_llm_pipeline()
# Construct prompt for the LLM
prompt = f"""As a professional songwriter, write ONLY the lyrics for a {genre} song with these specifications:
- Key: {key} {mode}
- Tempo: {tempo} BPM
- Emotion: {emotion}
- Theme: {theme}
- Duration: {duration:.1f} seconds
- Time signature: {music_analysis["rhythm_analysis"]["estimated_time_signature"]}
DO NOT include any explanations, thinking process, or commentary about the lyrics.
DO NOT use bullet points or numbering.
The output should ONLY contain the actual song lyrics, formatted as they would appear in a song.
"""
# Generate lyrics using the LLM pipeline
generation_result = text_generator(
prompt,
max_new_tokens=1024,
do_sample=True,
temperature=0.7,
top_p=0.9,
return_full_text=False
)
lyrics = generation_result[0]["generated_text"]
# Additional post-processing to remove common thinking patterns
lyrics = re.sub(r'^(Here are|Here is|These are).*?:\s*', '', lyrics, flags=re.IGNORECASE)
lyrics = re.sub(r'^Title:.*?$', '', lyrics, flags=re.MULTILINE).strip()
lyrics = re.sub(r'^Verse( \d+)?:.*?$', '', lyrics, flags=re.MULTILINE).strip()
lyrics = re.sub(r'^Chorus:.*?$', '', lyrics, flags=re.MULTILINE).strip()
lyrics = re.sub(r'^Bridge:.*?$', '', lyrics, flags=re.MULTILINE).strip()
lyrics = re.sub(r'^Intro:.*?$', '', lyrics, flags=re.MULTILINE).strip()
lyrics = re.sub(r'^Outro:.*?$', '', lyrics, flags=re.MULTILINE).strip()
return lyrics
except Exception as e:
error_msg = f"Error generating lyrics: {str(e)}"
print(error_msg)
return error_msg
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Music Analysis & Lyrics Generator") as demo:
gr.Markdown("# Music Analysis & Lyrics Generator")
gr.Markdown("Upload a music file or record audio to analyze it and generate matching lyrics")
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.Audio(
label="Upload or Record Audio",
type="filepath",
sources=["upload", "microphone"]
)
analyze_btn = gr.Button("Analyze and Generate Lyrics", variant="primary")
with gr.Column(scale=2):
with gr.Tab("Analysis"):
analysis_output = gr.Textbox(label="Music Analysis Results", lines=10)
with gr.Row():
tempo_output = gr.Number(label="Tempo (BPM)")
time_sig_output = gr.Textbox(label="Time Signature")
emotion_output = gr.Textbox(label="Primary Emotion")
theme_output = gr.Textbox(label="Primary Theme")
genre_output = gr.Textbox(label="Primary Genre")
with gr.Tab("Generated Lyrics"):
lyrics_output = gr.Textbox(label="Generated Lyrics", lines=20)
# Set up event handlers
analyze_btn.click(
fn=process_audio,
inputs=[audio_input],
outputs=[analysis_output, lyrics_output, tempo_output, time_sig_output,
emotion_output, theme_output, genre_output]
)
gr.Markdown("""
## How it works
1. Upload or record a music file
2. The system analyzes tempo, beats, time signature and other musical features
3. It detects emotion, theme, and music genre
4. Using this information, it generates lyrics that match the style and length of your music
""")
return demo
# Launch the app
demo = create_interface()
if __name__ == "__main__":
demo.launch()
else:
# For Hugging Face Spaces
app = demo