syllables_matching_experiment / beat_analysis.py
root
ss
8515dc5
raw
history blame
17.4 kB
import librosa
import numpy as np
import pronouncing
import re
from functools import lru_cache
import string
from nltk.corpus import cmudict
import nltk
try:
nltk.data.find('corpora/cmudict')
except LookupError:
nltk.download('cmudict')
class BeatAnalyzer:
def __init__(self):
# Mapping for standard stress patterns by time signature
# Simplified to only include 4/4, 3/4, 2/4, and 6/8
self.stress_patterns = {
# Format: Strong (1.0), Medium (0.5), Weak (0.0)
"4/4": [1.0, 0.0, 0.5, 0.0], # Strong, weak, medium, weak
"3/4": [1.0, 0.0, 0.0], # Strong, weak, weak
"2/4": [1.0, 0.0], # Strong, weak
"6/8": [1.0, 0.0, 0.0, 0.5, 0.0, 0.0] # Strong, weak, weak, medium, weak, weak
}
self.cmudict = None
try:
self.cmudict = cmudict.dict()
except:
pass # Fall back to rule-based counting if cmudict is not available
# Genre-specific syllable-to-beat ratio guidelines
self.genre_syllable_ratios = {
# Genre: (min_ratio, typical_ratio, max_ratio)
'pop': (0.7, 1.5, 3.0), # Pop tends to have more syllables per beat
'rock': (0.7, 1.2, 2.5), # Rock can vary widely
'hiphop': (1.5, 3.0, 5.0), # Hip hop often has many syllables per beat
'rap': (2.0, 4.0, 7.0), # Rap often has very high syllable counts
'folk': (0.8, 1.0, 1.5), # Folk often has close to 1:1 ratio
'country': (0.7, 1.2, 2.0), # Country tends to be moderate
'jazz': (0.5, 1.0, 3.0), # Jazz can be very flexible
'reggae': (0.6, 1.0, 1.5), # Reggae often emphasizes specific beats
'soul': (0.7, 1.2, 2.0), # Soul music tends to be expressive
'r&b': (0.8, 1.5, 2.5), # R&B can have melisma
'electronic': (0.5, 1.0, 2.0), # Electronic music varies widely
'disco': (1.0, 1.5, 2.5), # Disco tends to have more syllables
'classical': (0.5, 1.0, 2.0), # Classical can vary by subgenre
'metal': (0.8, 1.5, 3.0), # Metal often has more syllables on strong beats
'blues': (0.5, 0.8, 1.5), # Blues often extends syllables
'default': (0.7, 1.5, 3.0) # Default for unknown genres
}
@lru_cache(maxsize=128)
def count_syllables(self, word):
"""Count syllables in a word using CMU dictionary if available, otherwise use rule-based method."""
word = word.lower().strip()
word = re.sub(r'[^a-z]', '', word) # Remove non-alphabetic characters
if not word:
return 0
# Try using CMUDict first if available
if self.cmudict and word in self.cmudict:
return max([len(list(y for y in x if y[-1].isdigit())) for x in self.cmudict[word]])
# Rule-based syllable counting as fallback
# Modified version from NLTK's implementation
vowels = "aeiouy"
double_vowels = ['aa', 'ae', 'ai', 'ao', 'au', 'ay', 'ea', 'ee', 'ei', 'eo', 'eu', 'ey', 'ia', 'ie', 'ii', 'io', 'iu', 'oa', 'oe', 'oi', 'oo', 'ou', 'oy', 'ua', 'ue', 'ui', 'uo', 'uy']
prev_was_vowel = False
count = 0
final_e = False
if word.endswith('e') and not word.endswith('le'):
final_e = True
for i, char in enumerate(word):
if char in vowels:
# Check if current char and previous char form a dipthong
if prev_was_vowel and i > 0 and (word[i-1:i+1] in double_vowels):
prev_was_vowel = True
continue
if not prev_was_vowel:
count += 1
prev_was_vowel = True
else:
prev_was_vowel = False
# Handle edge cases
if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
count += 1
elif final_e:
count = max(count-1, 1) # Remove last 'e', but ensure at least 1 syllable
elif word.endswith('y') and not prev_was_vowel:
count += 1
# Ensure at least one syllable
return max(count, 1)
def analyze_beat_pattern(self, audio_path, sr=22050, time_signature="4/4"):
"""Analyze beat patterns and stresses in music using the provided time signature."""
# Load audio
y, sr = librosa.load(audio_path, sr=sr)
# Get tempo and beat frames
tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
# Get beat strengths using onset envelope
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
beat_strengths = onset_env[beat_frames]
# Normalize beat strengths
if len(beat_strengths) > 0 and np.max(beat_strengths) > np.min(beat_strengths):
beat_strengths = (beat_strengths - np.min(beat_strengths)) / (np.max(beat_strengths) - np.min(beat_strengths))
# Parse time signature
if '/' in time_signature:
num, denom = map(int, time_signature.split('/'))
else:
num, denom = 4, 4 # Default to 4/4
# Group beats into bars (each bar is one phrase based on time signature)
bars = []
current_bar = []
for i, (time, strength) in enumerate(zip(beat_times, beat_strengths)):
# Determine metrical position and stress
metrical_position = i % num
# Define stress pattern according to time signature
if time_signature == "4/4":
if metrical_position == 0: # First beat (strongest)
stress = "S" # Strong
elif metrical_position == 2: # Third beat (medium)
stress = "M" # Medium
else: # Second and fourth beats (weak)
stress = "W" # Weak
elif time_signature == "3/4":
if metrical_position == 0: # First beat (strongest)
stress = "S" # Strong
else: # Other beats (weak)
stress = "W" # Weak
elif time_signature == "6/8":
if metrical_position == 0: # First beat (strongest)
stress = "S" # Strong
elif metrical_position == 3: # Fourth beat (medium)
stress = "M" # Medium
else: # Other beats (weak)
stress = "W" # Weak
elif time_signature == "2/4":
if metrical_position == 0: # First beat (strongest)
stress = "S" # Strong
else: # Second beat (weak)
stress = "W" # Weak
else:
# Default pattern for other time signatures
if metrical_position == 0:
stress = "S"
else:
stress = "W"
# Add beat to current bar
current_bar.append({
'time': time,
'strength': strength,
'stress': stress,
'metrical_position': metrical_position
})
# When we complete a bar, add it to our bars list
if metrical_position == num - 1 or i == len(beat_times) - 1:
if current_bar:
bars.append(current_bar)
current_bar = []
# If there's any remaining beats, add them as a partial bar
if current_bar:
bars.append(current_bar)
# Organize beats into phrases (one phrase = one bar)
phrases = []
for i, bar in enumerate(bars):
phrase_beats = bar
if not phrase_beats:
continue
# Calculate the phrase information
phrase = {
'id': i,
'num_beats': len(phrase_beats),
'beats': phrase_beats,
'stress_pattern': ''.join(beat['stress'] for beat in phrase_beats),
'start_time': phrase_beats[0]['time'],
'end_time': phrase_beats[-1]['time'] + (phrase_beats[-1]['time'] - phrase_beats[-2]['time'] if len(phrase_beats) > 1 else 0.5),
}
phrases.append(phrase)
return {
'tempo': tempo,
'time_signature': time_signature,
'num_beats': len(beat_times),
'beat_times': beat_times.tolist(),
'beat_strengths': beat_strengths.tolist(),
'phrases': phrases
}
def create_lyric_template(self, beat_analysis):
"""Create templates for lyrics based on beat phrases."""
templates = []
if not beat_analysis or 'phrases' not in beat_analysis:
return templates
phrases = beat_analysis['phrases']
for i, phrase in enumerate(phrases):
duration = phrase['end_time'] - phrase['start_time']
template = {
'id': phrase['id'],
'start_time': phrase['start_time'],
'end_time': phrase['end_time'],
'duration': duration,
'num_beats': phrase['num_beats'],
'stress_pattern': phrase['stress_pattern'],
'syllable_guide': self.generate_phrase_guide(phrase)
}
templates.append(template)
return templates
def generate_phrase_guide(self, template, words_per_beat=0.5):
"""Generate a guide for each phrase to help the LLM."""
num_beats = template['num_beats']
stress_pattern = template['stress_pattern']
# Create a visual representation of the stress pattern
# S = Strong stress, M = Medium stress, W = Weak stress
visual_pattern = ""
for i, stress in enumerate(stress_pattern):
if stress == "S":
visual_pattern += "STRONG "
elif stress == "M":
visual_pattern += "medium "
else:
visual_pattern += "weak "
# Estimate number of words based on beats (very rough estimate)
est_words = max(1, int(num_beats * words_per_beat))
# Estimate syllables - more flexible now, allowing for reasonable ranges
# Typical song might have 1-3 syllables per beat
min_syllables = num_beats
max_syllables = num_beats * 3
guide = f"~{est_words} words, ~{min_syllables}-{max_syllables} syllables | Pattern: {visual_pattern}"
return guide
def check_syllable_stress_match(self, text, template, genre="pop"):
"""Check if lyrics match the syllable and stress pattern with genre-specific flexibility."""
# Split text into words and count syllables
words = text.split()
syllable_count = sum(self.count_syllables(word) for word in words)
# Get expected syllable count based on number of beats
expected_count = template['num_beats']
# Get syllable-to-beat ratios based on genre
genre_lower = genre.lower()
if genre_lower in self.genre_syllable_ratios:
min_ratio, typical_ratio, max_ratio = self.genre_syllable_ratios[genre_lower]
else:
min_ratio, typical_ratio, max_ratio = self.genre_syllable_ratios['default']
# Calculate flexible min and max syllable expectations based on genre
min_expected = max(1, int(expected_count * min_ratio))
max_expected = int(expected_count * max_ratio)
# Check if syllable count falls within genre-appropriate range
within_range = min_expected <= syllable_count <= max_expected
# Consider typical ratio - how close are we to the ideal for this genre?
ideal_count = int(expected_count * typical_ratio)
closeness_to_ideal = 1.0 - min(abs(syllable_count - ideal_count) / (max_expected - min_expected + 1), 1.0)
# Get detailed syllable breakdown for stress analysis
word_syllables = []
for word in words:
count = self.count_syllables(word)
word_syllables.append(count)
# Analyze stress pattern match using a more flexible approach
stress_pattern = template['stress_pattern']
# Simple stress matching algorithm (can be improved in future versions)
# We need to map syllables to beats in a more flexible way
syllable_to_beat_mapping = self._map_syllables_to_beats(word_syllables, stress_pattern)
# Calculate stress match score based on alignment of stressed syllables with strong beats
stress_match_percentage = self._calculate_stress_match(words, word_syllables, syllable_to_beat_mapping, stress_pattern)
# Consider a stress match if the percentage is high enough
stress_matches = stress_match_percentage >= 0.7
return {
'syllable_count': syllable_count,
'expected_count': expected_count,
'min_expected': min_expected,
'max_expected': max_expected,
'within_range': within_range,
'matches_beat_count': syllable_count == expected_count, # Exact match (strict)
'close_match': within_range, # Flexible match (based on genre)
'stress_matches': stress_matches,
'stress_match_percentage': stress_match_percentage,
'closeness_to_ideal': closeness_to_ideal,
'word_syllables': word_syllables,
'ideal_syllable_count': ideal_count
}
def _map_syllables_to_beats(self, word_syllables, stress_pattern):
"""Map syllables to beats in a flexible way."""
total_syllables = sum(word_syllables)
total_beats = len(stress_pattern)
# Simple mapping for now - this could be improved with more sophisticated algorithms
if total_syllables <= total_beats:
# Fewer syllables than beats - some beats have no syllables (prolongation)
mapping = []
syllable_index = 0
for beat_index in range(total_beats):
if syllable_index < total_syllables:
mapping.append((syllable_index, beat_index))
syllable_index += 1
return mapping
else:
# More syllables than beats - some beats have multiple syllables (melisma/syncopation)
mapping = []
syllables_per_beat = total_syllables / total_beats
for beat_index in range(total_beats):
start_syllable = int(beat_index * syllables_per_beat)
end_syllable = int((beat_index + 1) * syllables_per_beat)
for syllable_index in range(start_syllable, end_syllable):
if syllable_index < total_syllables:
mapping.append((syllable_index, beat_index))
return mapping
def _calculate_stress_match(self, words, word_syllables, syllable_to_beat_mapping, stress_pattern):
"""Calculate how well syllable stresses match beat stresses."""
# This is a simplified version - real stress analysis would be more complex
# For now, we'll assume the first syllable of each word is stressed
# First, create a flat list of all syllables with their stress (1 = stressed, 0 = unstressed)
syllable_stresses = []
for word, syllable_count in zip(words, word_syllables):
# Simple assumption: first syllable is stressed, rest are unstressed
for i in range(syllable_count):
if i == 0: # First syllable of word
syllable_stresses.append(1) # Stressed
else:
syllable_stresses.append(0) # Unstressed
# Count matches between syllable stress and beat stress
matches = 0
total_mapped = 0
for syllable_index, beat_index in syllable_to_beat_mapping:
if syllable_index < len(syllable_stresses):
syllable_stress = syllable_stresses[syllable_index]
beat_stress = 1 if stress_pattern[beat_index] == 'S' else (0.5 if stress_pattern[beat_index] == 'M' else 0)
# Consider it a match if:
# - Stressed syllable on Strong beat
# - Unstressed syllable on Weak beat
# - Some partial credit for other combinations
if (syllable_stress == 1 and beat_stress > 0.5) or (syllable_stress == 0 and beat_stress < 0.5):
matches += 1
elif syllable_stress == 1 and beat_stress == 0.5: # Stressed syllable on Medium beat
matches += 0.7
total_mapped += 1
if total_mapped == 0:
return 0
return matches / total_mapped