ss
Browse files- beat_analysis.py +411 -1
- emotionanalysis.py +14 -503
beat_analysis.py
CHANGED
@@ -6,6 +6,7 @@ from functools import lru_cache
|
|
6 |
import string
|
7 |
from nltk.corpus import cmudict
|
8 |
import nltk
|
|
|
9 |
|
10 |
try:
|
11 |
nltk.data.find('corpora/cmudict')
|
@@ -126,9 +127,418 @@ class BeatAnalyzer:
|
|
126 |
|
127 |
# Ensure at least one syllable
|
128 |
return max(count, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
"""Analyze beat patterns and stresses in music using the provided time signature."""
|
|
|
|
|
|
|
|
|
|
|
132 |
# Load audio
|
133 |
y, sr = librosa.load(audio_path, sr=sr)
|
134 |
|
|
|
6 |
import string
|
7 |
from nltk.corpus import cmudict
|
8 |
import nltk
|
9 |
+
from scipy import signal
|
10 |
|
11 |
try:
|
12 |
nltk.data.find('corpora/cmudict')
|
|
|
127 |
|
128 |
# Ensure at least one syllable
|
129 |
return max(count, 1)
|
130 |
+
|
131 |
+
def detect_time_signature(self, audio_path, sr=22050):
|
132 |
+
"""
|
133 |
+
Advanced multi-method approach to time signature detection
|
134 |
+
|
135 |
+
Args:
|
136 |
+
audio_path: Path to audio file
|
137 |
+
sr: Sample rate
|
138 |
+
|
139 |
+
Returns:
|
140 |
+
dict with detected time signature and confidence
|
141 |
+
"""
|
142 |
+
# Load audio
|
143 |
+
y, sr = librosa.load(audio_path, sr=sr)
|
144 |
+
|
145 |
+
# 1. Compute onset envelope and beat positions
|
146 |
+
onset_env = librosa.onset.onset_strength(y=y, sr=sr, hop_length=512)
|
147 |
+
|
148 |
+
# Get tempo and beat frames
|
149 |
+
tempo, beat_frames = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr)
|
150 |
+
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
|
151 |
+
|
152 |
+
# Return default if not enough beats detected
|
153 |
+
if len(beat_times) < 8:
|
154 |
+
return {"time_signature": "4/4", "confidence": 0.5}
|
155 |
+
|
156 |
+
# 2. Extract beat strengths and normalize
|
157 |
+
beat_strengths = self._get_beat_strengths(y, sr, beat_times, onset_env)
|
158 |
+
|
159 |
+
# 3. Compute various time signature features using different methods
|
160 |
+
results = {}
|
161 |
+
|
162 |
+
# Method 1: Beat pattern autocorrelation
|
163 |
+
autocorr_result = self._detect_by_autocorrelation(onset_env, sr)
|
164 |
+
results["autocorrelation"] = autocorr_result
|
165 |
+
|
166 |
+
# Method 2: Beat strength pattern matching
|
167 |
+
pattern_result = self._detect_by_pattern_matching(beat_strengths)
|
168 |
+
results["pattern_matching"] = pattern_result
|
169 |
+
|
170 |
+
# Method 3: Spectral rhythmic analysis
|
171 |
+
spectral_result = self._detect_by_spectral_analysis(onset_env, sr)
|
172 |
+
results["spectral"] = spectral_result
|
173 |
+
|
174 |
+
# Method 4: Note density analysis
|
175 |
+
density_result = self._detect_by_note_density(y, sr, beat_times)
|
176 |
+
results["note_density"] = density_result
|
177 |
+
|
178 |
+
# Method 5: Tempo-based estimation
|
179 |
+
tempo_result = self._estimate_from_tempo(tempo)
|
180 |
+
results["tempo_based"] = tempo_result
|
181 |
+
|
182 |
+
# 4. Combine results with weighted voting
|
183 |
+
final_result = self._combine_detection_results(results, tempo)
|
184 |
+
|
185 |
+
return final_result
|
186 |
+
|
187 |
+
def _get_beat_strengths(self, y, sr, beat_times, onset_env):
|
188 |
+
"""Extract normalized strengths at beat positions"""
|
189 |
+
# Convert beat times to frames
|
190 |
+
beat_frames = librosa.time_to_frames(beat_times, sr=sr, hop_length=512)
|
191 |
+
beat_frames = [min(f, len(onset_env)-1) for f in beat_frames]
|
192 |
+
|
193 |
+
# Get beat strengths from onset envelope
|
194 |
+
beat_strengths = np.array([onset_env[f] for f in beat_frames])
|
195 |
+
|
196 |
+
# Also look at energy and spectral flux at beat positions
|
197 |
+
hop_length = 512
|
198 |
+
frame_length = 2048
|
199 |
+
|
200 |
+
# Get energy at each beat
|
201 |
+
energy = librosa.feature.rms(y=y, frame_length=frame_length, hop_length=hop_length)[0]
|
202 |
+
beat_energy = np.array([energy[min(f, len(energy)-1)] for f in beat_frames])
|
203 |
+
|
204 |
+
# Combine onset strength with energy (weighted average)
|
205 |
+
beat_strengths = 0.7 * beat_strengths + 0.3 * beat_energy
|
206 |
+
|
207 |
+
# Normalize
|
208 |
+
if np.max(beat_strengths) > 0:
|
209 |
+
beat_strengths = beat_strengths / np.max(beat_strengths)
|
210 |
+
|
211 |
+
return beat_strengths
|
212 |
+
|
213 |
+
def _detect_by_autocorrelation(self, onset_env, sr):
|
214 |
+
"""Detect meter using autocorrelation of onset strength"""
|
215 |
+
# Calculate autocorrelation of onset envelope
|
216 |
+
hop_length = 512
|
217 |
+
ac = librosa.autocorrelate(onset_env, max_size=4 * sr // hop_length)
|
218 |
+
ac = librosa.util.normalize(ac)
|
219 |
+
|
220 |
+
# Find significant peaks in autocorrelation
|
221 |
+
peaks = signal.find_peaks(ac, height=0.2, distance=sr//(8*hop_length))[0]
|
222 |
+
|
223 |
+
if len(peaks) < 2:
|
224 |
+
return {"time_signature": "4/4", "confidence": 0.4}
|
225 |
+
|
226 |
+
# Analyze peak intervals in terms of beats
|
227 |
+
peak_intervals = np.diff(peaks)
|
228 |
+
|
229 |
+
# Convert peaks to time
|
230 |
+
peak_times = peaks * hop_length / sr
|
231 |
+
|
232 |
+
# Analyze for common time signature patterns
|
233 |
+
time_sig_votes = {}
|
234 |
+
|
235 |
+
# Check if peaks match expected bar lengths
|
236 |
+
for ts, info in self.common_time_signatures.items():
|
237 |
+
beats_per_bar = info["beats_per_bar"]
|
238 |
+
|
239 |
+
# Check how well peaks match this meter
|
240 |
+
score = 0
|
241 |
+
for interval in peak_intervals:
|
242 |
+
# Check if this interval corresponds to this time signature
|
243 |
+
# Allow some tolerance around the expected value
|
244 |
+
expected = beats_per_bar * (hop_length / sr) # in seconds
|
245 |
+
tolerance = 0.25 * expected
|
246 |
+
|
247 |
+
if abs(interval * hop_length / sr - expected) < tolerance:
|
248 |
+
score += 1
|
249 |
+
|
250 |
+
if len(peak_intervals) > 0:
|
251 |
+
time_sig_votes[ts] = score / len(peak_intervals)
|
252 |
+
|
253 |
+
# Return most likely time signature
|
254 |
+
if time_sig_votes:
|
255 |
+
best_ts = max(time_sig_votes.items(), key=lambda x: x[1])
|
256 |
+
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
|
257 |
+
|
258 |
+
return {"time_signature": "4/4", "confidence": 0.4}
|
259 |
+
|
260 |
+
def _detect_by_pattern_matching(self, beat_strengths):
|
261 |
+
"""Match beat strength patterns against known time signature patterns"""
|
262 |
+
if len(beat_strengths) < 6:
|
263 |
+
return {"time_signature": "4/4", "confidence": 0.4}
|
264 |
+
|
265 |
+
results = {}
|
266 |
+
|
267 |
+
# Try each possible time signature
|
268 |
+
for ts, info in self.common_time_signatures.items():
|
269 |
+
beats_per_bar = info["beats_per_bar"]
|
270 |
+
expected_pattern = info["beat_pattern"]
|
271 |
+
|
272 |
+
# Calculate correlation scores for overlapping segments
|
273 |
+
scores = []
|
274 |
+
|
275 |
+
# We need at least one complete pattern
|
276 |
+
if len(beat_strengths) >= beats_per_bar:
|
277 |
+
# Try different offsets to find best alignment
|
278 |
+
for offset in range(min(beats_per_bar, len(beat_strengths) - beats_per_bar + 1)):
|
279 |
+
# Calculate scores for each complete pattern
|
280 |
+
pattern_scores = []
|
281 |
+
|
282 |
+
for i in range(offset, len(beat_strengths) - beats_per_bar + 1, beats_per_bar):
|
283 |
+
segment = beat_strengths[i:i+beats_per_bar]
|
284 |
+
|
285 |
+
# If expected pattern is longer than segment, truncate it
|
286 |
+
pattern = expected_pattern[:len(segment)]
|
287 |
+
|
288 |
+
# Normalize segment and pattern
|
289 |
+
if np.std(segment) > 0 and np.std(pattern) > 0:
|
290 |
+
# Calculate correlation
|
291 |
+
corr = np.corrcoef(segment, pattern)[0, 1]
|
292 |
+
if not np.isnan(corr):
|
293 |
+
pattern_scores.append(corr)
|
294 |
+
|
295 |
+
if pattern_scores:
|
296 |
+
scores.append(np.mean(pattern_scores))
|
297 |
+
|
298 |
+
# Use the best score among different offsets
|
299 |
+
if scores:
|
300 |
+
confidence = max(scores)
|
301 |
+
results[ts] = confidence
|
302 |
+
|
303 |
+
# Find best match
|
304 |
+
if results:
|
305 |
+
best_ts = max(results.items(), key=lambda x: x[1])
|
306 |
+
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
|
307 |
+
|
308 |
+
# Default
|
309 |
+
return {"time_signature": "4/4", "confidence": 0.5}
|
310 |
+
|
311 |
+
def _detect_by_spectral_analysis(self, onset_env, sr):
|
312 |
+
"""Analyze rhythm in frequency domain"""
|
313 |
+
# Get rhythm periodicity through Fourier Transform
|
314 |
+
# Focus on periods corresponding to typical bar lengths (1-8 seconds)
|
315 |
+
hop_length = 512
|
316 |
+
|
317 |
+
# Calculate rhythm periodicity
|
318 |
+
fft_size = 2**13 # Large enough to give good frequency resolution
|
319 |
+
S = np.abs(np.fft.rfft(onset_env, n=fft_size))
|
320 |
+
|
321 |
+
# Convert frequency to tempo in BPM
|
322 |
+
freqs = np.fft.rfftfreq(fft_size, d=hop_length/sr)
|
323 |
+
tempos = 60 * freqs
|
324 |
+
|
325 |
+
# Focus on reasonable tempo range (40-240 BPM)
|
326 |
+
tempo_mask = (tempos >= 40) & (tempos <= 240)
|
327 |
+
S_tempo = S[tempo_mask]
|
328 |
+
tempos = tempos[tempo_mask]
|
329 |
+
|
330 |
+
# Find peaks in spectrum
|
331 |
+
peaks = signal.find_peaks(S_tempo, height=np.max(S_tempo)*0.1, distance=5)[0]
|
332 |
+
|
333 |
+
if len(peaks) == 0:
|
334 |
+
return {"time_signature": "4/4", "confidence": 0.4}
|
335 |
+
|
336 |
+
# Get peak tempos and strengths
|
337 |
+
peak_tempos = tempos[peaks]
|
338 |
+
peak_strengths = S_tempo[peaks]
|
339 |
+
|
340 |
+
# Sort by strength
|
341 |
+
peak_indices = np.argsort(peak_strengths)[::-1]
|
342 |
+
peak_tempos = peak_tempos[peak_indices]
|
343 |
+
peak_strengths = peak_strengths[peak_indices]
|
344 |
+
|
345 |
+
# Analyze relationships between peaks
|
346 |
+
# For example, 3/4 typically has peaks at multiples of 3 beats
|
347 |
+
# 4/4 has peaks at multiples of 4 beats
|
348 |
+
|
349 |
+
time_sig_scores = {}
|
350 |
+
|
351 |
+
# Check relationships between top peaks
|
352 |
+
if len(peak_tempos) >= 2:
|
353 |
+
tempo_ratios = []
|
354 |
+
for i in range(len(peak_tempos)):
|
355 |
+
for j in range(i+1, len(peak_tempos)):
|
356 |
+
if peak_tempos[j] > 0:
|
357 |
+
ratio = peak_tempos[i] / peak_tempos[j]
|
358 |
+
tempo_ratios.append(ratio)
|
359 |
+
|
360 |
+
# Check for patterns indicative of different time signatures
|
361 |
+
for ts in self.common_time_signatures:
|
362 |
+
score = 0
|
363 |
+
|
364 |
+
if ts == "4/4" or ts == "6/8":
|
365 |
+
# Look for ratios close to 4 or 6
|
366 |
+
for ratio in tempo_ratios:
|
367 |
+
if abs(ratio - 4) < 0.2 or abs(ratio - 6) < 0.3:
|
368 |
+
score += 1
|
369 |
+
|
370 |
+
# Normalize score
|
371 |
+
if tempo_ratios:
|
372 |
+
time_sig_scores[ts] = min(1.0, score / len(tempo_ratios) + 0.4)
|
373 |
+
|
374 |
+
# If we have meaningful scores, return best match
|
375 |
+
if time_sig_scores:
|
376 |
+
best_ts = max(time_sig_scores.items(), key=lambda x: x[1])
|
377 |
+
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
|
378 |
+
|
379 |
+
# Default fallback
|
380 |
+
return {"time_signature": "4/4", "confidence": 0.4}
|
381 |
|
382 |
+
def _detect_by_note_density(self, y, sr, beat_times):
|
383 |
+
"""Analyze note density patterns between beats"""
|
384 |
+
if len(beat_times) < 6:
|
385 |
+
return {"time_signature": "4/4", "confidence": 0.4}
|
386 |
+
|
387 |
+
# Extract note onsets (not just beats)
|
388 |
+
onset_times = librosa.onset.onset_detect(y=y, sr=sr, units='time')
|
389 |
+
|
390 |
+
if len(onset_times) < len(beat_times):
|
391 |
+
return {"time_signature": "4/4", "confidence": 0.4}
|
392 |
+
|
393 |
+
# Count onsets between consecutive beats
|
394 |
+
note_counts = []
|
395 |
+
for i in range(len(beat_times) - 1):
|
396 |
+
start = beat_times[i]
|
397 |
+
end = beat_times[i+1]
|
398 |
+
|
399 |
+
# Count onsets in this beat
|
400 |
+
count = sum(1 for t in onset_times if start <= t < end)
|
401 |
+
note_counts.append(count)
|
402 |
+
|
403 |
+
# Look for repeating patterns in the note counts
|
404 |
+
time_sig_scores = {}
|
405 |
+
|
406 |
+
for ts, info in self.common_time_signatures.items():
|
407 |
+
beats_per_bar = info["beats_per_bar"]
|
408 |
+
|
409 |
+
# Skip if we don't have enough data
|
410 |
+
if len(note_counts) < beats_per_bar:
|
411 |
+
continue
|
412 |
+
|
413 |
+
# Calculate pattern similarity for this time signature
|
414 |
+
scores = []
|
415 |
+
|
416 |
+
for offset in range(min(beats_per_bar, len(note_counts) - beats_per_bar + 1)):
|
417 |
+
similarities = []
|
418 |
+
|
419 |
+
for i in range(offset, len(note_counts) - beats_per_bar + 1, beats_per_bar):
|
420 |
+
# Get current bar pattern
|
421 |
+
pattern = note_counts[i:i+beats_per_bar]
|
422 |
+
|
423 |
+
# Compare with expected density pattern
|
424 |
+
expected = self.rhythm_density.get(ts, [1.0] * beats_per_bar)
|
425 |
+
expected = expected[:len(pattern)] # Truncate if needed
|
426 |
+
|
427 |
+
# Normalize both patterns
|
428 |
+
if sum(pattern) > 0 and sum(expected) > 0:
|
429 |
+
pattern_norm = [p/max(1, sum(pattern)) for p in pattern]
|
430 |
+
expected_norm = [e/sum(expected) for e in expected]
|
431 |
+
|
432 |
+
# Calculate similarity (1 - distance)
|
433 |
+
distance = sum(abs(p - e) for p, e in zip(pattern_norm, expected_norm)) / len(pattern)
|
434 |
+
similarity = 1 - min(1.0, distance)
|
435 |
+
similarities.append(similarity)
|
436 |
+
|
437 |
+
if similarities:
|
438 |
+
scores.append(np.mean(similarities))
|
439 |
+
|
440 |
+
# Use the best score
|
441 |
+
if scores:
|
442 |
+
time_sig_scores[ts] = max(scores)
|
443 |
+
|
444 |
+
# Return best match
|
445 |
+
if time_sig_scores:
|
446 |
+
best_ts = max(time_sig_scores.items(), key=lambda x: x[1])
|
447 |
+
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
|
448 |
+
|
449 |
+
# Default
|
450 |
+
return {"time_signature": "4/4", "confidence": 0.4}
|
451 |
+
|
452 |
+
def _estimate_from_tempo(self, tempo):
|
453 |
+
"""Use tempo to help estimate likely time signature"""
|
454 |
+
# Statistical tendencies: slower tempos often in compound meters (6/8)
|
455 |
+
# Fast tempos favor 4/4
|
456 |
+
|
457 |
+
scores = {}
|
458 |
+
|
459 |
+
if tempo < 70:
|
460 |
+
# Slow tempos favor compound meters
|
461 |
+
scores = {
|
462 |
+
"4/4": 0.5,
|
463 |
+
"3/4": 0.4,
|
464 |
+
"6/8": 0.7
|
465 |
+
}
|
466 |
+
elif 70 <= tempo <= 120:
|
467 |
+
# Medium tempos favor 4/4, 3/4
|
468 |
+
scores = {
|
469 |
+
"4/4": 0.7,
|
470 |
+
"3/4": 0.6,
|
471 |
+
"6/8": 0.3
|
472 |
+
}
|
473 |
+
else:
|
474 |
+
# Fast tempos favor 4/4
|
475 |
+
scores = {
|
476 |
+
"4/4": 0.8,
|
477 |
+
"3/4": 0.4,
|
478 |
+
"6/8": 0.2
|
479 |
+
}
|
480 |
+
|
481 |
+
# Find best match
|
482 |
+
best_ts = max(scores.items(), key=lambda x: x[1])
|
483 |
+
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
|
484 |
+
|
485 |
+
def _combine_detection_results(self, results, tempo):
|
486 |
+
"""Combine results from different detection methods"""
|
487 |
+
# Define weights for different methods
|
488 |
+
method_weights = {
|
489 |
+
"autocorrelation": 0.25,
|
490 |
+
"pattern_matching": 0.30,
|
491 |
+
"spectral": 0.20,
|
492 |
+
"note_density": 0.20,
|
493 |
+
"tempo_based": 0.05
|
494 |
+
}
|
495 |
+
|
496 |
+
# Prior probability (based on frequency in music)
|
497 |
+
prior_weights = {ts: info["weight"] for ts, info in self.common_time_signatures.items()}
|
498 |
+
|
499 |
+
# Combine votes
|
500 |
+
total_votes = {ts: prior_weights.get(ts, 0.1) for ts in self.common_time_signatures}
|
501 |
+
|
502 |
+
for method, result in results.items():
|
503 |
+
ts = result["time_signature"]
|
504 |
+
confidence = result["confidence"]
|
505 |
+
weight = method_weights.get(method, 0.1)
|
506 |
+
|
507 |
+
# Add weighted vote
|
508 |
+
if ts in total_votes:
|
509 |
+
total_votes[ts] += confidence * weight
|
510 |
+
else:
|
511 |
+
total_votes[ts] = confidence * weight
|
512 |
+
|
513 |
+
# Special case: disambiguate between 3/4 and 6/8
|
514 |
+
if "3/4" in total_votes and "6/8" in total_votes:
|
515 |
+
# If the two are close, use tempo to break tie
|
516 |
+
if abs(total_votes["3/4"] - total_votes["6/8"]) < 0.1:
|
517 |
+
if tempo < 100: # Slower tempo favors 6/8
|
518 |
+
total_votes["6/8"] += 0.1
|
519 |
+
else: # Faster tempo favors 3/4
|
520 |
+
total_votes["3/4"] += 0.1
|
521 |
+
|
522 |
+
# Get highest scoring time signature
|
523 |
+
best_ts = max(total_votes.items(), key=lambda x: x[1])
|
524 |
+
|
525 |
+
# Calculate confidence score (normalize to 0-1)
|
526 |
+
confidence = best_ts[1] / (sum(total_votes.values()) + 0.001)
|
527 |
+
confidence = min(0.95, max(0.4, confidence)) # Bound confidence
|
528 |
+
|
529 |
+
return {
|
530 |
+
"time_signature": best_ts[0],
|
531 |
+
"confidence": confidence,
|
532 |
+
"all_candidates": {ts: float(score) for ts, score in total_votes.items()}
|
533 |
+
}
|
534 |
+
|
535 |
+
def analyze_beat_pattern(self, audio_path, sr=22050, time_signature="4/4", auto_detect=False):
|
536 |
"""Analyze beat patterns and stresses in music using the provided time signature."""
|
537 |
+
# Auto-detect time signature if requested
|
538 |
+
if auto_detect:
|
539 |
+
time_sig_result = self.detect_time_signature(audio_path, sr)
|
540 |
+
time_signature = time_sig_result["time_signature"]
|
541 |
+
|
542 |
# Load audio
|
543 |
y, sr = librosa.load(audio_path, sr=sr)
|
544 |
|
emotionanalysis.py
CHANGED
@@ -9,9 +9,13 @@ except ImportError:
|
|
9 |
from scipy.stats import mode
|
10 |
import warnings
|
11 |
warnings.filterwarnings('ignore') # Suppress librosa warnings
|
|
|
12 |
|
13 |
class MusicAnalyzer:
|
14 |
def __init__(self):
|
|
|
|
|
|
|
15 |
# Emotion feature mappings - these define characteristics of different emotions
|
16 |
self.emotion_profiles = {
|
17 |
'happy': {'tempo': (100, 180), 'energy': (0.6, 1.0), 'major_mode': True, 'brightness': (0.6, 1.0)},
|
@@ -34,28 +38,6 @@ class MusicAnalyzer:
|
|
34 |
|
35 |
# Musical key mapping
|
36 |
self.key_names = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
|
37 |
-
|
38 |
-
# Common time signatures and their beat patterns with weights for prior probability
|
39 |
-
# Simplified to only include 4/4, 3/4, and 6/8
|
40 |
-
self.common_time_signatures = {
|
41 |
-
"4/4": {"beats_per_bar": 4, "beat_pattern": [1.0, 0.2, 0.5, 0.2], "weight": 0.45},
|
42 |
-
"3/4": {"beats_per_bar": 3, "beat_pattern": [1.0, 0.2, 0.3], "weight": 0.25},
|
43 |
-
"6/8": {"beats_per_bar": 6, "beat_pattern": [1.0, 0.2, 0.3, 0.8, 0.2, 0.3], "weight": 0.30}
|
44 |
-
}
|
45 |
-
|
46 |
-
# Add common accent patterns for different time signatures
|
47 |
-
self.accent_patterns = {
|
48 |
-
"4/4": [[1, 0, 0, 0], [1, 0, 2, 0], [1, 0, 2, 0, 3, 0, 2, 0]],
|
49 |
-
"3/4": [[1, 0, 0], [1, 0, 2]],
|
50 |
-
"6/8": [[1, 0, 0, 2, 0, 0], [1, 0, 0, 2, 0, 3]]
|
51 |
-
}
|
52 |
-
|
53 |
-
# Expected rhythm density (relative note density per beat) for different time signatures
|
54 |
-
self.rhythm_density = {
|
55 |
-
"4/4": [1.0, 0.7, 0.8, 0.6],
|
56 |
-
"3/4": [1.0, 0.6, 0.7],
|
57 |
-
"6/8": [1.0, 0.5, 0.4, 0.8, 0.5, 0.4]
|
58 |
-
}
|
59 |
|
60 |
def load_audio(self, file_path, sr=22050, duration=None):
|
61 |
"""Load audio file and return time series and sample rate"""
|
@@ -81,8 +63,16 @@ class MusicAnalyzer:
|
|
81 |
ac = librosa.autocorrelate(onset_env, max_size=sr // 2)
|
82 |
ac = librosa.util.normalize(ac, norm=np.inf)
|
83 |
|
84 |
-
#
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
# Extract results from the time signature detection
|
88 |
estimated_signature = time_sig_result["time_signature"]
|
@@ -110,485 +100,6 @@ class MusicAnalyzer:
|
|
110 |
"time_signature_candidates": time_sig_result.get("all_candidates", {})
|
111 |
}
|
112 |
|
113 |
-
def _detect_time_signature(self, y, sr):
|
114 |
-
"""
|
115 |
-
Multi-method approach to time signature detection
|
116 |
-
|
117 |
-
Args:
|
118 |
-
y: Audio signal
|
119 |
-
sr: Sample rate
|
120 |
-
|
121 |
-
Returns:
|
122 |
-
dict with detected time signature and confidence
|
123 |
-
"""
|
124 |
-
# 1. Compute onset envelope and beat positions
|
125 |
-
onset_env = librosa.onset.onset_strength(y=y, sr=sr, hop_length=512)
|
126 |
-
|
127 |
-
# Get tempo and beat frames
|
128 |
-
tempo, beat_frames = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr)
|
129 |
-
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
|
130 |
-
|
131 |
-
# Return default if not enough beats detected
|
132 |
-
if len(beat_times) < 8:
|
133 |
-
return {"time_signature": "4/4", "confidence": 0.5}
|
134 |
-
|
135 |
-
# 2. Extract beat strengths and normalize
|
136 |
-
beat_strengths = self._get_beat_strengths(y, sr, beat_times, onset_env)
|
137 |
-
|
138 |
-
# 3. Compute various time signature features using different methods
|
139 |
-
results = {}
|
140 |
-
|
141 |
-
# Method 1: Beat pattern autocorrelation
|
142 |
-
autocorr_result = self._detect_by_autocorrelation(onset_env, sr)
|
143 |
-
results["autocorrelation"] = autocorr_result
|
144 |
-
|
145 |
-
# Method 2: Beat strength pattern matching
|
146 |
-
pattern_result = self._detect_by_pattern_matching(beat_strengths)
|
147 |
-
results["pattern_matching"] = pattern_result
|
148 |
-
|
149 |
-
# Method 3: Spectral rhythmic analysis
|
150 |
-
spectral_result = self._detect_by_spectral_analysis(onset_env, sr)
|
151 |
-
results["spectral"] = spectral_result
|
152 |
-
|
153 |
-
# Method 4: Note density analysis
|
154 |
-
density_result = self._detect_by_note_density(y, sr, beat_times)
|
155 |
-
results["note_density"] = density_result
|
156 |
-
|
157 |
-
# Method 5: Tempo-based estimation
|
158 |
-
tempo_result = self._estimate_from_tempo(tempo)
|
159 |
-
results["tempo_based"] = tempo_result
|
160 |
-
|
161 |
-
# 4. Combine results with weighted voting
|
162 |
-
final_result = self._combine_detection_results(results, tempo)
|
163 |
-
|
164 |
-
return final_result
|
165 |
-
|
166 |
-
def _get_beat_strengths(self, y, sr, beat_times, onset_env):
|
167 |
-
"""Extract normalized strengths at beat positions"""
|
168 |
-
# Convert beat times to frames
|
169 |
-
beat_frames = librosa.time_to_frames(beat_times, sr=sr, hop_length=512)
|
170 |
-
beat_frames = [min(f, len(onset_env)-1) for f in beat_frames]
|
171 |
-
|
172 |
-
# Get beat strengths from onset envelope
|
173 |
-
beat_strengths = np.array([onset_env[f] for f in beat_frames])
|
174 |
-
|
175 |
-
# Also look at energy and spectral flux at beat positions
|
176 |
-
hop_length = 512
|
177 |
-
frame_length = 2048
|
178 |
-
|
179 |
-
# Get energy at each beat
|
180 |
-
energy = librosa.feature.rms(y=y, frame_length=frame_length, hop_length=hop_length)[0]
|
181 |
-
beat_energy = np.array([energy[min(f, len(energy)-1)] for f in beat_frames])
|
182 |
-
|
183 |
-
# Combine onset strength with energy (weighted average)
|
184 |
-
beat_strengths = 0.7 * beat_strengths + 0.3 * beat_energy
|
185 |
-
|
186 |
-
# Normalize
|
187 |
-
if np.max(beat_strengths) > 0:
|
188 |
-
beat_strengths = beat_strengths / np.max(beat_strengths)
|
189 |
-
|
190 |
-
return beat_strengths
|
191 |
-
|
192 |
-
def _detect_by_autocorrelation(self, onset_env, sr):
|
193 |
-
"""Detect meter using autocorrelation of onset strength"""
|
194 |
-
# Calculate autocorrelation of onset envelope
|
195 |
-
hop_length = 512
|
196 |
-
ac = librosa.autocorrelate(onset_env, max_size=4 * sr // hop_length)
|
197 |
-
ac = librosa.util.normalize(ac)
|
198 |
-
|
199 |
-
# Find significant peaks in autocorrelation
|
200 |
-
peaks = signal.find_peaks(ac, height=0.2, distance=sr//(8*hop_length))[0]
|
201 |
-
|
202 |
-
if len(peaks) < 2:
|
203 |
-
return {"time_signature": "4/4", "confidence": 0.4}
|
204 |
-
|
205 |
-
# Analyze peak intervals in terms of beats
|
206 |
-
peak_intervals = np.diff(peaks)
|
207 |
-
|
208 |
-
# Convert peaks to time
|
209 |
-
peak_times = peaks * hop_length / sr
|
210 |
-
|
211 |
-
# Analyze for common time signature patterns
|
212 |
-
time_sig_votes = {}
|
213 |
-
|
214 |
-
# Check if peaks match expected bar lengths
|
215 |
-
for ts, info in self.common_time_signatures.items():
|
216 |
-
beats_per_bar = info["beats_per_bar"]
|
217 |
-
|
218 |
-
# Check how well peaks match this meter
|
219 |
-
score = 0
|
220 |
-
for interval in peak_intervals:
|
221 |
-
# Check if this interval corresponds to this time signature
|
222 |
-
# Allow some tolerance around the expected value
|
223 |
-
expected = beats_per_bar * (hop_length / sr) # in seconds
|
224 |
-
tolerance = 0.25 * expected
|
225 |
-
|
226 |
-
if abs(interval * hop_length / sr - expected) < tolerance:
|
227 |
-
score += 1
|
228 |
-
|
229 |
-
if len(peak_intervals) > 0:
|
230 |
-
time_sig_votes[ts] = score / len(peak_intervals)
|
231 |
-
|
232 |
-
# Return most likely time signature
|
233 |
-
if time_sig_votes:
|
234 |
-
best_ts = max(time_sig_votes.items(), key=lambda x: x[1])
|
235 |
-
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
|
236 |
-
|
237 |
-
return {"time_signature": "4/4", "confidence": 0.4}
|
238 |
-
|
239 |
-
def _detect_by_pattern_matching(self, beat_strengths):
|
240 |
-
"""Match beat strength patterns against known time signature patterns"""
|
241 |
-
if len(beat_strengths) < 6:
|
242 |
-
return {"time_signature": "4/4", "confidence": 0.4}
|
243 |
-
|
244 |
-
results = {}
|
245 |
-
|
246 |
-
# Try each possible time signature
|
247 |
-
for ts, info in self.common_time_signatures.items():
|
248 |
-
beats_per_bar = info["beats_per_bar"]
|
249 |
-
expected_pattern = info["beat_pattern"]
|
250 |
-
|
251 |
-
# Calculate correlation scores for overlapping segments
|
252 |
-
scores = []
|
253 |
-
|
254 |
-
# We need at least one complete pattern
|
255 |
-
if len(beat_strengths) >= beats_per_bar:
|
256 |
-
# Try different offsets to find best alignment
|
257 |
-
for offset in range(min(beats_per_bar, len(beat_strengths) - beats_per_bar + 1)):
|
258 |
-
# Calculate scores for each complete pattern
|
259 |
-
pattern_scores = []
|
260 |
-
|
261 |
-
for i in range(offset, len(beat_strengths) - beats_per_bar + 1, beats_per_bar):
|
262 |
-
segment = beat_strengths[i:i+beats_per_bar]
|
263 |
-
|
264 |
-
# If expected pattern is longer than segment, truncate it
|
265 |
-
pattern = expected_pattern[:len(segment)]
|
266 |
-
|
267 |
-
# Normalize segment and pattern
|
268 |
-
if np.std(segment) > 0 and np.std(pattern) > 0:
|
269 |
-
# Calculate correlation
|
270 |
-
corr = np.corrcoef(segment, pattern)[0, 1]
|
271 |
-
if not np.isnan(corr):
|
272 |
-
pattern_scores.append(corr)
|
273 |
-
|
274 |
-
if pattern_scores:
|
275 |
-
scores.append(np.mean(pattern_scores))
|
276 |
-
|
277 |
-
# Use the best score among different offsets
|
278 |
-
if scores:
|
279 |
-
confidence = max(scores)
|
280 |
-
results[ts] = confidence
|
281 |
-
|
282 |
-
# Find best match
|
283 |
-
if results:
|
284 |
-
best_ts = max(results.items(), key=lambda x: x[1])
|
285 |
-
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
|
286 |
-
|
287 |
-
# Default
|
288 |
-
return {"time_signature": "4/4", "confidence": 0.5}
|
289 |
-
|
290 |
-
def _detect_by_spectral_analysis(self, onset_env, sr):
|
291 |
-
"""Analyze rhythm in frequency domain"""
|
292 |
-
# Get rhythm periodicity through Fourier Transform
|
293 |
-
# Focus on periods corresponding to typical bar lengths (1-8 seconds)
|
294 |
-
hop_length = 512
|
295 |
-
|
296 |
-
# Calculate rhythm periodicity
|
297 |
-
fft_size = 2**13 # Large enough to give good frequency resolution
|
298 |
-
S = np.abs(np.fft.rfft(onset_env, n=fft_size))
|
299 |
-
|
300 |
-
# Convert frequency to tempo in BPM
|
301 |
-
freqs = np.fft.rfftfreq(fft_size, d=hop_length/sr)
|
302 |
-
tempos = 60 * freqs
|
303 |
-
|
304 |
-
# Focus on reasonable tempo range (40-240 BPM)
|
305 |
-
tempo_mask = (tempos >= 40) & (tempos <= 240)
|
306 |
-
S_tempo = S[tempo_mask]
|
307 |
-
tempos = tempos[tempo_mask]
|
308 |
-
|
309 |
-
# Find peaks in spectrum
|
310 |
-
peaks = signal.find_peaks(S_tempo, height=np.max(S_tempo)*0.1, distance=5)[0]
|
311 |
-
|
312 |
-
if len(peaks) == 0:
|
313 |
-
return {"time_signature": "4/4", "confidence": 0.4}
|
314 |
-
|
315 |
-
# Get peak tempos and strengths
|
316 |
-
peak_tempos = tempos[peaks]
|
317 |
-
peak_strengths = S_tempo[peaks]
|
318 |
-
|
319 |
-
# Sort by strength
|
320 |
-
peak_indices = np.argsort(peak_strengths)[::-1]
|
321 |
-
peak_tempos = peak_tempos[peak_indices]
|
322 |
-
peak_strengths = peak_strengths[peak_indices]
|
323 |
-
|
324 |
-
# Analyze relationships between peaks
|
325 |
-
# For example, 3/4 typically has peaks at multiples of 3 beats
|
326 |
-
# 4/4 has peaks at multiples of 4 beats
|
327 |
-
|
328 |
-
time_sig_scores = {}
|
329 |
-
|
330 |
-
# Check relationships between top peaks
|
331 |
-
if len(peak_tempos) >= 2:
|
332 |
-
tempo_ratios = []
|
333 |
-
for i in range(len(peak_tempos)):
|
334 |
-
for j in range(i+1, len(peak_tempos)):
|
335 |
-
if peak_tempos[j] > 0:
|
336 |
-
ratio = peak_tempos[i] / peak_tempos[j]
|
337 |
-
tempo_ratios.append(ratio)
|
338 |
-
|
339 |
-
# Check for patterns indicative of different time signatures
|
340 |
-
for ts in self.common_time_signatures:
|
341 |
-
score = 0
|
342 |
-
|
343 |
-
if ts == "4/4" or ts == "6/8":
|
344 |
-
# Look for ratios close to 4 or 6
|
345 |
-
for ratio in tempo_ratios:
|
346 |
-
if abs(ratio - 4) < 0.2 or abs(ratio - 6) < 0.3:
|
347 |
-
score += 1
|
348 |
-
|
349 |
-
# Normalize score
|
350 |
-
if tempo_ratios:
|
351 |
-
time_sig_scores[ts] = min(1.0, score / len(tempo_ratios) + 0.4)
|
352 |
-
|
353 |
-
# If we have meaningful scores, return best match
|
354 |
-
if time_sig_scores:
|
355 |
-
best_ts = max(time_sig_scores.items(), key=lambda x: x[1])
|
356 |
-
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
|
357 |
-
|
358 |
-
# Default fallback
|
359 |
-
return {"time_signature": "4/4", "confidence": 0.4}
|
360 |
-
|
361 |
-
def _detect_by_note_density(self, y, sr, beat_times):
|
362 |
-
"""Analyze note density patterns between beats"""
|
363 |
-
if len(beat_times) < 6:
|
364 |
-
return {"time_signature": "4/4", "confidence": 0.4}
|
365 |
-
|
366 |
-
# Extract note onsets (not just beats)
|
367 |
-
onset_times = librosa.onset.onset_detect(y=y, sr=sr, units='time')
|
368 |
-
|
369 |
-
if len(onset_times) < len(beat_times):
|
370 |
-
return {"time_signature": "4/4", "confidence": 0.4}
|
371 |
-
|
372 |
-
# Count onsets between consecutive beats
|
373 |
-
note_counts = []
|
374 |
-
for i in range(len(beat_times) - 1):
|
375 |
-
start = beat_times[i]
|
376 |
-
end = beat_times[i+1]
|
377 |
-
|
378 |
-
# Count onsets in this beat
|
379 |
-
count = sum(1 for t in onset_times if start <= t < end)
|
380 |
-
note_counts.append(count)
|
381 |
-
|
382 |
-
# Look for repeating patterns in the note counts
|
383 |
-
time_sig_scores = {}
|
384 |
-
|
385 |
-
for ts, info in self.common_time_signatures.items():
|
386 |
-
beats_per_bar = info["beats_per_bar"]
|
387 |
-
|
388 |
-
# Skip if we don't have enough data
|
389 |
-
if len(note_counts) < beats_per_bar:
|
390 |
-
continue
|
391 |
-
|
392 |
-
# Calculate pattern similarity for this time signature
|
393 |
-
scores = []
|
394 |
-
|
395 |
-
for offset in range(min(beats_per_bar, len(note_counts) - beats_per_bar + 1)):
|
396 |
-
similarities = []
|
397 |
-
|
398 |
-
for i in range(offset, len(note_counts) - beats_per_bar + 1, beats_per_bar):
|
399 |
-
# Get current bar pattern
|
400 |
-
pattern = note_counts[i:i+beats_per_bar]
|
401 |
-
|
402 |
-
# Compare with expected density pattern
|
403 |
-
expected = self.rhythm_density.get(ts, [1.0] * beats_per_bar)
|
404 |
-
expected = expected[:len(pattern)] # Truncate if needed
|
405 |
-
|
406 |
-
# Normalize both patterns
|
407 |
-
if sum(pattern) > 0 and sum(expected) > 0:
|
408 |
-
pattern_norm = [p/max(1, sum(pattern)) for p in pattern]
|
409 |
-
expected_norm = [e/sum(expected) for e in expected]
|
410 |
-
|
411 |
-
# Calculate similarity (1 - distance)
|
412 |
-
distance = sum(abs(p - e) for p, e in zip(pattern_norm, expected_norm)) / len(pattern)
|
413 |
-
similarity = 1 - min(1.0, distance)
|
414 |
-
similarities.append(similarity)
|
415 |
-
|
416 |
-
if similarities:
|
417 |
-
scores.append(np.mean(similarities))
|
418 |
-
|
419 |
-
# Use the best score
|
420 |
-
if scores:
|
421 |
-
time_sig_scores[ts] = max(scores)
|
422 |
-
|
423 |
-
# Return best match
|
424 |
-
if time_sig_scores:
|
425 |
-
best_ts = max(time_sig_scores.items(), key=lambda x: x[1])
|
426 |
-
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
|
427 |
-
|
428 |
-
# Default
|
429 |
-
return {"time_signature": "4/4", "confidence": 0.4}
|
430 |
-
|
431 |
-
def _estimate_from_tempo(self, tempo):
|
432 |
-
"""Use tempo to help estimate likely time signature"""
|
433 |
-
# Statistical tendencies: slower tempos often in compound meters (6/8)
|
434 |
-
# Fast tempos favor 4/4
|
435 |
-
|
436 |
-
scores = {}
|
437 |
-
|
438 |
-
if tempo < 70:
|
439 |
-
# Slow tempos favor compound meters
|
440 |
-
scores = {
|
441 |
-
"4/4": 0.5,
|
442 |
-
"3/4": 0.4,
|
443 |
-
"6/8": 0.7
|
444 |
-
}
|
445 |
-
elif 70 <= tempo <= 120:
|
446 |
-
# Medium tempos favor 4/4, 3/4
|
447 |
-
scores = {
|
448 |
-
"4/4": 0.7,
|
449 |
-
"3/4": 0.6,
|
450 |
-
"6/8": 0.3
|
451 |
-
}
|
452 |
-
else:
|
453 |
-
# Fast tempos favor 4/4
|
454 |
-
scores = {
|
455 |
-
"4/4": 0.8,
|
456 |
-
"3/4": 0.4,
|
457 |
-
"6/8": 0.2
|
458 |
-
}
|
459 |
-
|
460 |
-
# Find best match
|
461 |
-
best_ts = max(scores.items(), key=lambda x: x[1])
|
462 |
-
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
|
463 |
-
|
464 |
-
def _combine_detection_results(self, results, tempo):
|
465 |
-
"""Combine results from different detection methods"""
|
466 |
-
# Define weights for different methods
|
467 |
-
method_weights = {
|
468 |
-
"autocorrelation": 0.25,
|
469 |
-
"pattern_matching": 0.30,
|
470 |
-
"spectral": 0.20,
|
471 |
-
"note_density": 0.20,
|
472 |
-
"tempo_based": 0.05
|
473 |
-
}
|
474 |
-
|
475 |
-
# Prior probability (based on frequency in music)
|
476 |
-
prior_weights = {ts: info["weight"] for ts, info in self.common_time_signatures.items()}
|
477 |
-
|
478 |
-
# Combine votes
|
479 |
-
total_votes = {ts: prior_weights.get(ts, 0.1) for ts in self.common_time_signatures}
|
480 |
-
|
481 |
-
for method, result in results.items():
|
482 |
-
ts = result["time_signature"]
|
483 |
-
confidence = result["confidence"]
|
484 |
-
weight = method_weights.get(method, 0.1)
|
485 |
-
|
486 |
-
# Add weighted vote
|
487 |
-
if ts in total_votes:
|
488 |
-
total_votes[ts] += confidence * weight
|
489 |
-
else:
|
490 |
-
total_votes[ts] = confidence * weight
|
491 |
-
|
492 |
-
# Special case: disambiguate between 3/4 and 6/8
|
493 |
-
if "3/4" in total_votes and "6/8" in total_votes:
|
494 |
-
# If the two are close, use tempo to break tie
|
495 |
-
if abs(total_votes["3/4"] - total_votes["6/8"]) < 0.1:
|
496 |
-
if tempo < 100: # Slower tempo favors 6/8
|
497 |
-
total_votes["6/8"] += 0.1
|
498 |
-
else: # Faster tempo favors 3/4
|
499 |
-
total_votes["3/4"] += 0.1
|
500 |
-
|
501 |
-
# Get highest scoring time signature
|
502 |
-
best_ts = max(total_votes.items(), key=lambda x: x[1])
|
503 |
-
|
504 |
-
# Calculate confidence score (normalize to 0-1)
|
505 |
-
confidence = best_ts[1] / (sum(total_votes.values()) + 0.001)
|
506 |
-
confidence = min(0.95, max(0.4, confidence)) # Bound confidence
|
507 |
-
|
508 |
-
return {
|
509 |
-
"time_signature": best_ts[0],
|
510 |
-
"confidence": confidence,
|
511 |
-
"all_candidates": {ts: float(score) for ts, score in total_votes.items()}
|
512 |
-
}
|
513 |
-
|
514 |
-
def _evaluate_beat_pattern(self, beat_strengths, pattern_length):
|
515 |
-
"""
|
516 |
-
Evaluate how consistently a specific pattern length fits the beat strengths
|
517 |
-
|
518 |
-
Args:
|
519 |
-
beat_strengths: Array of normalized beat strengths
|
520 |
-
pattern_length: Length of pattern to evaluate
|
521 |
-
|
522 |
-
Returns:
|
523 |
-
score: How well this pattern length explains the data (0-1)
|
524 |
-
"""
|
525 |
-
if len(beat_strengths) < pattern_length * 2:
|
526 |
-
return 0.0
|
527 |
-
|
528 |
-
# Calculate correlation between consecutive patterns
|
529 |
-
correlations = []
|
530 |
-
|
531 |
-
num_full_patterns = len(beat_strengths) // pattern_length
|
532 |
-
for i in range(num_full_patterns - 1):
|
533 |
-
pattern1 = beat_strengths[i*pattern_length:(i+1)*pattern_length]
|
534 |
-
pattern2 = beat_strengths[(i+1)*pattern_length:(i+2)*pattern_length]
|
535 |
-
|
536 |
-
# Calculate similarity between consecutive patterns
|
537 |
-
if len(pattern1) == len(pattern2) and len(pattern1) > 0:
|
538 |
-
corr = np.corrcoef(pattern1, pattern2)[0, 1]
|
539 |
-
if not np.isnan(corr):
|
540 |
-
correlations.append(corr)
|
541 |
-
|
542 |
-
# Calculate variance of beat strengths within each position
|
543 |
-
variance_score = 0
|
544 |
-
if num_full_patterns >= 2:
|
545 |
-
position_values = [[] for _ in range(pattern_length)]
|
546 |
-
|
547 |
-
for i in range(num_full_patterns):
|
548 |
-
for pos in range(pattern_length):
|
549 |
-
idx = i * pattern_length + pos
|
550 |
-
if idx < len(beat_strengths):
|
551 |
-
position_values[pos].append(beat_strengths[idx])
|
552 |
-
|
553 |
-
# Calculate variance ratio (higher means consistent accent patterns)
|
554 |
-
between_pos_var = np.var([np.mean(vals) for vals in position_values if vals])
|
555 |
-
within_pos_var = np.mean([np.var(vals) for vals in position_values if len(vals) > 1])
|
556 |
-
|
557 |
-
if within_pos_var > 0:
|
558 |
-
variance_score = between_pos_var / within_pos_var
|
559 |
-
variance_score = min(1.0, variance_score / 2.0) # Normalize
|
560 |
-
|
561 |
-
# Combine correlation and variance scores
|
562 |
-
if correlations:
|
563 |
-
correlation_score = np.mean(correlations)
|
564 |
-
return 0.7 * correlation_score + 0.3 * variance_score
|
565 |
-
|
566 |
-
return 0.5 * variance_score # Lower confidence if we couldn't calculate correlations
|
567 |
-
|
568 |
-
def _extract_average_pattern(self, beat_strengths, pattern_length):
|
569 |
-
"""
|
570 |
-
Extract the average beat pattern of specified length
|
571 |
-
|
572 |
-
Args:
|
573 |
-
beat_strengths: Array of beat strengths
|
574 |
-
pattern_length: Length of pattern to extract
|
575 |
-
|
576 |
-
Returns:
|
577 |
-
Average pattern of the specified length
|
578 |
-
"""
|
579 |
-
if len(beat_strengths) < pattern_length:
|
580 |
-
return np.array([])
|
581 |
-
|
582 |
-
# Number of complete patterns
|
583 |
-
num_patterns = len(beat_strengths) // pattern_length
|
584 |
-
|
585 |
-
if num_patterns == 0:
|
586 |
-
return np.array([])
|
587 |
-
|
588 |
-
# Reshape to stack patterns and calculate average
|
589 |
-
patterns = beat_strengths[:num_patterns * pattern_length].reshape((num_patterns, pattern_length))
|
590 |
-
return np.mean(patterns, axis=0)
|
591 |
-
|
592 |
def analyze_tonality(self, y, sr):
|
593 |
"""Analyze tonal features: key, mode, harmonic features"""
|
594 |
# Compute chromagram
|
|
|
9 |
from scipy.stats import mode
|
10 |
import warnings
|
11 |
warnings.filterwarnings('ignore') # Suppress librosa warnings
|
12 |
+
from beat_analysis import BeatAnalyzer # Import BeatAnalyzer for rhythm analysis
|
13 |
|
14 |
class MusicAnalyzer:
|
15 |
def __init__(self):
|
16 |
+
# Create an instance of BeatAnalyzer for rhythm detection
|
17 |
+
self.beat_analyzer = BeatAnalyzer()
|
18 |
+
|
19 |
# Emotion feature mappings - these define characteristics of different emotions
|
20 |
self.emotion_profiles = {
|
21 |
'happy': {'tempo': (100, 180), 'energy': (0.6, 1.0), 'major_mode': True, 'brightness': (0.6, 1.0)},
|
|
|
38 |
|
39 |
# Musical key mapping
|
40 |
self.key_names = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
def load_audio(self, file_path, sr=22050, duration=None):
|
43 |
"""Load audio file and return time series and sample rate"""
|
|
|
63 |
ac = librosa.autocorrelate(onset_env, max_size=sr // 2)
|
64 |
ac = librosa.util.normalize(ac, norm=np.inf)
|
65 |
|
66 |
+
# Use BeatAnalyzer for advanced time signature detection
|
67 |
+
# We need to save the audio temporarily to use the BeatAnalyzer method
|
68 |
+
import tempfile
|
69 |
+
import soundfile as sf
|
70 |
+
|
71 |
+
# Create a temporary file
|
72 |
+
with tempfile.NamedTemporaryFile(suffix='.wav', delete=True) as temp_file:
|
73 |
+
sf.write(temp_file.name, y, sr)
|
74 |
+
# Use BeatAnalyzer's advanced time signature detection
|
75 |
+
time_sig_result = self.beat_analyzer.detect_time_signature(temp_file.name)
|
76 |
|
77 |
# Extract results from the time signature detection
|
78 |
estimated_signature = time_sig_result["time_signature"]
|
|
|
100 |
"time_signature_candidates": time_sig_result.get("all_candidates", {})
|
101 |
}
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
def analyze_tonality(self, y, sr):
|
104 |
"""Analyze tonal features: key, mode, harmonic features"""
|
105 |
# Compute chromagram
|