File size: 4,911 Bytes
79e8897
 
 
 
 
 
dedd8bb
3847c85
 
 
dedd8bb
3847c85
79e8897
3847c85
79e8897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3847c85
 
 
79e8897
3847c85
79e8897
 
 
 
3847c85
79e8897
 
 
 
 
 
 
 
 
 
 
 
dedd8bb
3847c85
 
 
 
 
dedd8bb
 
 
3847c85
dedd8bb
3847c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dedd8bb
 
 
3847c85
dedd8bb
abdb79a
79e8897
 
 
3847c85
79e8897
 
3847c85
79e8897
 
3847c85
79e8897
 
 
 
 
 
 
 
3847c85
79e8897
 
 
3847c85
4b17ded
79e8897
 
3847c85
79e8897
 
3847c85
79e8897
 
 
 
3847c85
79e8897
 
3847c85
79e8897
3847c85
009fbd9
3847c85
79e8897
3847c85
 
79e8897
3847c85
 
 
ff37902
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
import pandas as pd
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from pydantic import BaseModel, Field, field_validator
from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader
from langchain.output_parsers import PydanticOutputParser
from docx import Document
from datetime import datetime
import os
import tempfile

# Model danych
class QuestionAnswer(BaseModel):
    question_number: int = Field(..., description="Numer pytania")
    answer: str = Field(..., description="Odpowiedź, tylko TAK lub NIE")
    citation: str = Field(..., description="Fragment cytatu")

    @field_validator("answer")
    def validate_answer(cls, v):
        if v not in {"TAK", "NIE"}:
            raise ValueError("Odpowiedź musi być TAK lub NIE")
        return v

class JobAdAnalysis(BaseModel):
    answers: list[QuestionAnswer]

parser = PydanticOutputParser(pydantic_object=JobAdAnalysis)

# Wczytanie matrycy danych
matryca_df = pd.read_csv('matryca.csv', header=None,
                         names=['area', 'prompt', 'true', 'false', 'more', 'hint'])

question_to_area_map = {}

def prepare_questions(df):
    global question_to_area_map
    question_to_area_map = {}
    questions_text = ""
    for index, row in df.iterrows():
        question_number = index + 1
        questions_text += f"{question_number} {row['prompt']}\n"
        question_to_area_map[question_number] = {
            'area': row['area'],
            'true': row['true'],
            'false': row['false'],
            'hint': row['hint'],
            'more': row['more']
        }
    return questions_text

def doc_to_text(file):
    extension = os.path.splitext(file.name)[1].lower()
    if extension == ".docx":
        loader = Docx2txtLoader(file.name)
    elif extension == ".pdf":
        loader = PyPDFLoader(file.name)
    else:
        return "error"
    pages = loader.load()
    return "\n".join(page.page_content for page in pages)

def create_report(result: pd.DataFrame) -> str:
    doc = Document('template.docx')
    doc.add_heading('Raport analizy ogłoszenia o pracę', 0)
    doc.add_paragraph(f'Data wygenerowania: {datetime.now().strftime("%d.%m.%Y %H:%M")}')
    for _, row in result.iterrows():
        doc.add_heading(str(row['area']), 1)
        doc.add_paragraph(str(row['citation']), style='Intense Quote')
        for line in str(row['content']).split('\n'):
            if line.strip():
                doc.add_paragraph(line)
        if pd.notna(row['more']):
            for line in str(row['more']).split('\n'):
                if line.strip():
                    doc.add_paragraph(line)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".docx") as tmp:
        doc.save(tmp.name)
        return tmp.name  # Zwracamy ścieżkę do pliku tymczasowego

def analyze_job_ad(job_ad, file):
    if file:
        job_ad = doc_to_text(file)
        if job_ad == "error":
            return None, None
    questions = prepare_questions(matryca_df)
    prompt_template = PromptTemplate.from_template(
        """Przeanalizuj poniższe ogłoszenie o pracę pod kątem dostępności dla osób z niepełnosprawnościami.

        Ogłoszenie:
        {job_ad}

        Odpowiedz na następujące pytania:
        {questions}

        Format odpowiedzi powinien być w następującej strukturze JSON:
        {{
          "answers": [
            {{
              "question_number": 1,
              "answer": "TAK/NIE",
              "citation": "dokładny cytat z tekstu"
            }}
          ]
        }}
        """
    )

    model = ChatOpenAI(temperature=0, model="gpt-4o-mini")
    chain = prompt_template | model | parser
    response = chain.invoke({"job_ad": job_ad, "questions": questions})

    output_df = pd.DataFrame(columns=['area', 'answer', 'citation', 'content', 'more'])
    for i in range(16):
        if response.answers[i].answer in {"TAK", "NIE"}:
            new_row = {
                'area': matryca_df.area[i],
                'answer': response.answers[i].answer,
                'citation': response.answers[i].citation,
                'content': matryca_df.true[i] if response.answers[i].answer == 'TAK' else matryca_df.false[i],
                'more': matryca_df.more[i]
            }
            output_df = pd.concat([output_df, pd.DataFrame([new_row])], ignore_index=True)

    word_file_path = create_report(output_df)
    json_output = output_df.to_dict(orient="records")
    return json_output, word_file_path

# Interfejs Gradio
demo = gr.Interface(
    fn=analyze_job_ad,
    inputs=[gr.TextArea(label="Ogłoszenie (opcjonalnie)"), gr.File(label="Plik PDF lub DOCX")],
    outputs=[gr.JSON(label="Wyniki analizy"), gr.File(label="Pobierz raport w formacie Word")],
    title="KoREKtor – analiza ogłoszenia",
).launch()