Spaces:
Running
on
Zero
Running
on
Zero
from transformers import pipeline, SamModel, SamProcessor | |
import torch | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
# check if cuda is available | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# we initialize model and processor | |
checkpoint = "google/owlv2-base-patch16-ensemble" | |
detector = pipeline(model=checkpoint, task="zero-shot-object-detection", device=device) | |
sam_model = SamModel.from_pretrained("jadechoghari/robustsam-vit-base").to(device) | |
sam_processor = SamProcessor.from_pretrained("jadechoghari/robustsam-vit-base") | |
def apply_mask(image, mask, color): | |
"""Apply a mask to an image with a specific color.""" | |
for c in range(3): # iterate over rgb channels | |
image[:, :, c] = np.where(mask, color[c], image[:, :, c]) | |
return image | |
def query(image, texts, threshold): | |
texts = texts.split(",") | |
predictions = detector( | |
image, | |
candidate_labels=texts, | |
threshold=threshold | |
) | |
image = np.array(image).copy() | |
colors = [ | |
(255, 0, 0), # Red | |
(0, 255, 0), # Green | |
(0, 0, 255), # Blue | |
(255, 255, 0), # Yellow | |
(255, 165, 0), # Orange | |
(255, 0, 255) # Magenta | |
] | |
for i, pred in enumerate(predictions): | |
score = pred["score"] | |
if score > 0.5: | |
box = [round(pred["box"]["xmin"], 2), round(pred["box"]["ymin"], 2), | |
round(pred["box"]["xmax"], 2), round(pred["box"]["ymax"], 2)] | |
inputs = sam_processor( | |
image, | |
input_boxes=[[[box]]], | |
return_tensors="pt" | |
).to(device) | |
with torch.no_grad(): | |
outputs = sam_model(**inputs) | |
mask = sam_processor.image_processor.post_process_masks( | |
outputs.pred_masks.cpu(), | |
inputs["original_sizes"].cpu(), | |
inputs["reshaped_input_sizes"].cpu() | |
)[0][0][0].numpy() | |
# we apply the mask with the corresponding color | |
color = colors[i % len(colors)] # we cycle through colors | |
image = apply_mask(image, mask > 0.5, color) | |
result_image = Image.fromarray(image) | |
return result_image | |
description = ( | |
"Welcome to RobustSAM by Snap Research." | |
"This Space uses RobustSAM, a robust version of the Segment Anything Model (SAM) with improved performance on low-quality images while maintaining zero-shot segmentation capabilities. " | |
"Thanks to its integration with OWLv2, RobustSAM becomes text-promptable, allowing for flexible and accurate segmentation, even with degraded image quality. Try the example or input an image with comma-separated candidate labels to see the enhanced segmentation results." | |
) | |
demo = gr.Interface( | |
query, | |
inputs=[gr.Image(type="pil", label="Image Input"), gr.Textbox(label="Candidate Labels"), gr.Slider(0, 1, value=0.05, label="Confidence Threshold")], | |
outputs=gr.Image(type="pil", label="Segmented Image"), | |
title="RobustSAM", | |
description=description, | |
examples=[ | |
["./blur.jpg", "insect", 0.1], | |
["./lowlight.jpg", "bus, window", 0.1], | |
["./rain.jpg", "tree, leafs", 0.1], | |
["./haze.jpg", "", 0.1], | |
], | |
cache_examples=True | |
) | |
demo.launch() |