robustsam / app.py
jadechoghari's picture
Update app.py
420fa3e verified
raw
history blame
2.62 kB
# no cpu required
#TODO: update to gpu usage
from transformers import pipeline, SamModel, SamProcessor
import torch
import numpy as np
import spaces
checkpoint = "google/owlv2-base-patch16-ensemble"
detector = pipeline(model=checkpoint, task="zero-shot-object-detection")
sam_model = SamModel.from_pretrained("jadechoghari/robustsam-vit-base")
sam_processor = SamProcessor.from_pretrained("jadechoghari/robustsam-vit-base")
@spaces.GPU
def query(image, texts, threshold):
texts = texts.split(",")
predictions = detector(
image,
candidate_labels=texts,
threshold=threshold
)
result_labels = []
for pred in predictions:
box = pred["box"]
score = pred["score"]
label = pred["label"]
box = [round(pred["box"]["xmin"], 2), round(pred["box"]["ymin"], 2),
round(pred["box"]["xmax"], 2), round(pred["box"]["ymax"], 2)]
inputs = sam_processor(
image,
input_boxes=[[[box]]],
return_tensors="pt"
)
with torch.no_grad():
outputs = sam_model(**inputs)
mask = sam_processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)[0][0][0].numpy()
mask = mask[np.newaxis, ...]
from PIL import Image, ImageDraw
# Convert mask to image format and overlay on the original image
mask_image = Image.fromarray((mask[0] * 255).astype(np.uint8))
mask_image = mask_image.convert("L") # Convert to grayscale for transparency
mask_image = mask_image.resize(image.size)
# Create an alpha mask for transparency
alpha_mask = Image.new("L", mask_image.size, 128) # Adjust transparency level here
image.paste(mask_image, (0, 0), alpha_mask) # Overlay the mask on the image
# Save the annotated image
image.save("annotated_image.png")
print("saved image")
result_labels.append((mask, label))
return image, result_labels
import gradio as gr
description = "This Space combines OWLv2, the state-of-the-art zero-shot object detection model with SAM, the state-of-the-art mask generation model. SAM normally doesn't accept text input. Combining SAM with OWLv2 makes SAM text promptable. Try the example or input an image and comma separated candidate labels to segment."
demo = gr.Interface(
query,
inputs=[gr.Image(type="pil", label="Image Input"), gr.Textbox(label = "Candidate Labels"), gr.Slider(0, 1, value=0.05, label="Confidence Threshold")],
outputs="annotatedimage",
title="OWL 🤝 SAM",
description=description
)
demo.launch(debug=True)