Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,7 @@ sam_processor = SamProcessor.from_pretrained("jadechoghari/robustsam-vit-base")
|
|
15 |
|
16 |
def apply_mask(image, mask, color):
|
17 |
"""Apply a mask to an image with a specific color."""
|
18 |
-
for c in range(3): #
|
19 |
image[:, :, c] = np.where(mask, color[c], image[:, :, c])
|
20 |
return image
|
21 |
|
@@ -59,33 +59,42 @@ def query(image, texts, threshold):
|
|
59 |
inputs["reshaped_input_sizes"].cpu()
|
60 |
)[0][0][0].numpy()
|
61 |
|
62 |
-
|
63 |
-
color = colors[i % len(colors)] # we cycle through colors
|
64 |
image = apply_mask(image, mask > 0.5, color)
|
65 |
|
66 |
result_image = Image.fromarray(image)
|
67 |
|
68 |
return result_image
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
["./blur.jpg", "insect", 0.1],
|
84 |
-
["./lowlight.jpg", "bus, window", 0.1]
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
)
|
90 |
-
|
91 |
-
demo.launch()
|
|
|
15 |
|
16 |
def apply_mask(image, mask, color):
|
17 |
"""Apply a mask to an image with a specific color."""
|
18 |
+
for c in range(3): # Iterate over RGB channels
|
19 |
image[:, :, c] = np.where(mask, color[c], image[:, :, c])
|
20 |
return image
|
21 |
|
|
|
59 |
inputs["reshaped_input_sizes"].cpu()
|
60 |
)[0][0][0].numpy()
|
61 |
|
62 |
+
color = colors[i % len(colors)] # cycle through colors
|
|
|
63 |
image = apply_mask(image, mask > 0.5, color)
|
64 |
|
65 |
result_image = Image.fromarray(image)
|
66 |
|
67 |
return result_image
|
68 |
|
69 |
+
title = """
|
70 |
+
# RobustSAM
|
71 |
+
"""
|
72 |
+
|
73 |
+
description = """
|
74 |
+
**Welcome to RobustSAM by Snap Research.**
|
75 |
+
|
76 |
+
This Space uses **RobustSAM**, a robust version of the Segment Anything Model (SAM) with improved performance on low-quality images while maintaining zero-shot segmentation capabilities.
|
77 |
+
|
78 |
+
Thanks to its integration with **OWLv2**, RobustSAM becomes text-promptable, allowing for flexible and accurate segmentation, even with degraded image quality.
|
79 |
+
|
80 |
+
Try the example or input an image with comma-separated candidate labels to see the enhanced segmentation results.
|
81 |
+
|
82 |
+
For better results, please check the [GitHub repository](https://github.com/robustsam/RobustSAM).
|
83 |
+
"""
|
84 |
+
|
85 |
+
with gr.Blocks() as demo:
|
86 |
+
gr.Markdown(title)
|
87 |
+
gr.Markdown(description)
|
88 |
+
|
89 |
+
gr.Interface(
|
90 |
+
query,
|
91 |
+
inputs=[gr.Image(type="pil", label="Image Input"), gr.Textbox(label="Candidate Labels"), gr.Slider(0, 1, value=0.05, label="Confidence Threshold")],
|
92 |
+
outputs=gr.Image(type="pil", label="Segmented Image"),
|
93 |
+
examples=[
|
94 |
["./blur.jpg", "insect", 0.1],
|
95 |
+
["./lowlight.jpg", "bus, window", 0.1]
|
96 |
+
],
|
97 |
+
cache_examples=True
|
98 |
+
)
|
99 |
+
|
100 |
+
demo.launch()
|
|
|
|