File size: 4,324 Bytes
1d6f0ac
 
 
 
 
 
 
 
 
 
a2aec99
1d6f0ac
 
 
 
 
a2aec99
 
 
 
 
 
 
1d6f0ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2aec99
1d6f0ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import gradio as gr
from scipy.spatial import distance as dist
from imutils import face_utils
import numpy as np
import imutils
import time
import dlib
import cv2
from keras.preprocessing.image import img_to_array
from keras.models import load_model
from huggingface_hub import hf_hub_download

# Define global variables
points = []
emotion_classifier = None

# Define Hugging Face repository details
repo_id = "jaimin/Age_detection"

# Download model files from Hugging Face
predictor_path = hf_hub_download(repo_id=repo_id, filename="shape_predictor_68_face_landmarks.dat")
emotion_model_path = hf_hub_download(repo_id=repo_id, filename="XCEPTION.102-0.66.hdf5")

def eye_brow_distance(leye, reye):
    global points
    distq = dist.euclidean(leye, reye)
    points.append(int(distq))
    return distq

def emotion_finder(faces, frame):
    global emotion_classifier
    EMOTIONS = ["angry", "disgust", "scared", "happy", "sad", "surprised", "neutral"]
    x, y, w, h = face_utils.rect_to_bb(faces)
    frame = frame[y:y + h, x:x + w]
    roi = cv2.resize(frame, (64, 64))
    roi = roi.astype("float") / 255.0
    roi = img_to_array(roi)
    roi = np.expand_dims(roi, axis=0)
    preds = emotion_classifier.predict(roi)[0]
    emotion_probability = np.max(preds)
    label = EMOTIONS[preds.argmax()]
    return label

def normalize_values(points, disp):
    normalized_value = abs(disp - np.min(points)) / abs(np.max(points) - np.min(points))
    stress_value = np.exp(-(normalized_value))
    return stress_value

def stress(video_path, duration):
    global points, emotion_classifier
    detector = dlib.get_frontal_face_detector()
    predictor = dlib.shape_predictor(predictor_path)
    emotion_classifier = load_model(emotion_model_path, compile=False)
    
    # Open video file
    cap = cv2.VideoCapture(video_path)
    points = []
    stress_labels = []
    start_time = time.time()

    while True:
        current_time = time.time()
        if current_time - start_time >= duration:
            break

        ret, frame = cap.read()
        if not ret:
            break
        
        frame = cv2.flip(frame, 1)
        frame = imutils.resize(frame, width=500, height=500)

        (lBegin, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eyebrow"]
        (rBegin, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eyebrow"]

        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

        try:
            detections = detector(gray, 0)
            for detection in detections:
                emotion = emotion_finder(detection, gray)
                shape = predictor(gray, detection)
                shape = face_utils.shape_to_np(shape)

                leyebrow = shape[lBegin:lEnd]
                reyebrow = shape[rBegin:rEnd]

                distq = eye_brow_distance(leyebrow[-1], reyebrow[0])
                stress_value = normalize_values(points, distq)

                # Determine stress label for this frame
                if emotion in ['scared', 'sad', 'angry'] and stress_value >= 0.75:
                    stress_label = 'stressed'
                else:
                    stress_label = 'not stressed'

                # Store stress label in list
                stress_labels.append(stress_label)

        except Exception as e:
            print(f'Error: {e}')

    cap.release()

    # Count occurrences of 'stressed' and 'not stressed'
    stressed_count = stress_labels.count('stressed')
    not_stressed_count = stress_labels.count('not stressed')

    # Determine which label occurred more frequently
    if stressed_count > not_stressed_count:
        most_frequent_label = 'stressed'
    else:
        most_frequent_label = 'not stressed'

    return stressed_count, not_stressed_count, most_frequent_label

def gradio_interface(video, duration):
    stressed_count, not_stressed_count, most_frequent_label = stress(video, duration)
    return f"Stressed frames: {stressed_count}", f"Not stressed frames: {not_stressed_count}", f"Most frequent state: {most_frequent_label}"

# Define Gradio interface for Heart and Stress Measurement
gr.Interface(
    fn=gradio_interface,
    inputs=[gr.Video(label="Upload a video file"), gr.Number(value=30, label="Duration (seconds)")],
    outputs="json",
    title="Heart Rate and Stress Measurement"
).launch(server_name="0.0.0.0")