Spaces:
Sleeping
Sleeping
import gc | |
import streamlit as st | |
import torch | |
from rag import load_all, run_query | |
def get_rag_qa() -> dict: | |
gc.collect() | |
torch.cuda.empty_cache() | |
return load_all( | |
embedder_path="Snowflake/snowflake-arctic-embed-l", | |
context_file="data/bioasq_contexts.jsonl", | |
index_file="data/bioasq_contexts__snowflake-arctic-embed-l__float32_hnsw.index", | |
reader_path="meta-llama/Llama-3.2-1B-Instruct", | |
) | |
left_column, cent_column, last_column = st.columns(3) | |
with cent_column: | |
st.image("cover.webp", width=400) | |
st.title("Ask the BioASQ Database Anything!") | |
# Initialize the RagQA model, might be already cached. | |
_ = get_rag_qa() | |
# Run QA | |
st.subheader("Ask away:") | |
question = st.text_input("Ask away:", "", label_visibility="collapsed") | |
submit = st.button("Submit") | |
st.markdown( | |
""" | |
> **For example, ask things like:** | |
> | |
> What is the Bartter syndrome? | |
> Which genes have been found to be associated with restless leg syndrome? | |
> Which diseases can be treated with Afamelanotide? | |
--- | |
""", | |
unsafe_allow_html=False, | |
) | |
if submit: | |
if not question.strip(): | |
st.error("Machine Learning still can't read minds. Please enter a question.") | |
else: | |
try: | |
with st.spinner( | |
"Combing through 3000+ documents from the BioASQ database..." | |
): | |
rag_qa = get_rag_qa() | |
retrieved_context_ids, sources, answer = run_query(question, **rag_qa) | |
print(answer) | |
print(retrieved_context_ids) | |
print(sources) | |
st.subheader("Answer:") | |
st.write(answer) | |
st.write("") | |
with st.expander("Show Sources"): | |
st.subheader("Sources:") | |
for i, (context_id, source) in enumerate( | |
zip(retrieved_context_ids, sources) | |
): | |
st.markdown(f"**BioASQ Document ID:** {context_id}") | |
st.markdown(f"**Text:**") | |
st.write(source) | |
if i < len(sources) - 1: | |
st.markdown("---") | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |