Spaces:
Runtime error
Runtime error
File size: 39,585 Bytes
c6919c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 |
from bark_infinity import generation
from bark_infinity import api
from bark_infinity.generation import SAMPLE_RATE, load_codec_model
from encodec.utils import convert_audio
import torchaudio
import torch
import os
import gradio
import numpy as np
import shutil
import math
import datetime
from pathlib import Path
import re
import gradio
from pydub import AudioSegment
from typing import List
from math import ceil
from encodec.utils import convert_audio
from bark_infinity.hubert.customtokenizer import CustomTokenizer
from bark_infinity.hubert.hubert_manager import HuBERTManager
from bark_infinity.hubert.pre_kmeans_hubert import CustomHubert
def sanitize_filename(filename):
# replace invalid characters with underscores
return re.sub(r"[^a-zA-Z0-9_]", "_", filename)
CONTEXT_WINDOW_SIZE = 1024
SEMANTIC_RATE_HZ = 49.9
SEMANTIC_VOCAB_SIZE = 10_000
CODEBOOK_SIZE = 1024
N_COARSE_CODEBOOKS = 2
N_FINE_CODEBOOKS = 8
COARSE_RATE_HZ = 75
SAMPLE_RATE = 24_000
TEXT_ENCODING_OFFSET = 10_048
SEMANTIC_PAD_TOKEN = 10_000
TEXT_PAD_TOKEN = 129_595
SEMANTIC_INFER_TOKEN = 129_599
from bark_infinity import api
from bark_infinity import generation
from bark_infinity import text_processing
from bark_infinity import config
# test polish
alt_model = {
"repo": "Hobis/bark-voice-cloning-polish-HuBERT-quantizer",
"model": "polish-HuBERT-quantizer_8_epoch.pth",
"tokenizer_name": "polish_tokenizer_large.pth",
}
"""
def validate_prompt_ratio(history_prompt):
semantic_to_coarse_ratio = COARSE_RATE_HZ / SEMANTIC_RATE_HZ
semantic_prompt = history_prompt["semantic_prompt"]
coarse_prompt = history_prompt["coarse_prompt"]
fine_prompt = history_prompt["fine_prompt"]
current_semantic_len = len(semantic_prompt)
current_coarse_len = coarse_prompt.shape[1]
current_fine_len = fine_prompt.shape[1]
expected_coarse_len = int(current_semantic_len * semantic_to_coarse_ratio)
expected_fine_len = expected_coarse_len
if current_coarse_len != expected_coarse_len:
print(f"Coarse length mismatch! Expected {expected_coarse_len}, got {current_coarse_len}.")
return False
if current_fine_len != expected_fine_len:
print(f"Fine length mismatch! Expected {expected_fine_len}, got {current_fine_len}.")
return False
return True
"""
import os
def write_clone_npz(filepath, full_generation, regen_fine=False, gen_raw_coarse=False, **kwargs):
gen_raw_coarse = False
filepath = api.generate_unique_filepath(filepath)
# np.savez_compressed(filepath, semantic_prompt = full_generation["semantic_prompt"], coarse_prompt = full_generation["coarse_prompt"], fine_prompt = full_generation["fine_prompt"])
if "semantic_prompt" in full_generation:
np.savez(
filepath,
semantic_prompt=full_generation["semantic_prompt"],
coarse_prompt=full_generation["coarse_prompt"],
fine_prompt=full_generation["fine_prompt"],
)
quick_codec_render(filepath)
else:
print("No semantic prompt to save")
history_prompt = load_npz(filepath)
if regen_fine:
# maybe cut half or something so half a speaker, so we have some history, would do that anyhing? or dupe it?
# fine_tokens = generation.generate_fine(full_generation["coarse_prompt"])
fine_tokens = generation.generate_fine(
history_prompt["coarse_prompt"], history_prompt=history_prompt
)
base = os.path.basename(filepath)
filename, extension = os.path.splitext(base)
suffix = "_blurryhistory_"
new_filename = filename + suffix
new_filepath = os.path.join(os.path.dirname(new_filepath), new_filename + extension)
new_filepath = api.generate_unique_filepath(new_filepath)
np.savez(
new_filepath,
semantic_prompt=history_prompt["semantic_prompt"],
coarse_prompt=history_prompt["coarse_prompt"],
fine_prompt=fine_tokens,
)
quick_codec_render(new_filepath)
fine_tokens = generation.generate_fine(history_prompt["coarse_prompt"], history_prompt=None)
base = os.path.basename(filepath)
filename, extension = os.path.splitext(base)
suffix = "_blurrynohitory_"
new_filename = filename + suffix
new_filepath = os.path.join(os.path.dirname(new_filepath), new_filename + extension)
new_filepath = api.generate_unique_filepath(new_filepath)
np.savez(
new_filepath,
semantic_prompt=history_prompt["semantic_prompt"],
coarse_prompt=history_prompt["coarse_prompt"],
fine_prompt=fine_tokens,
)
quick_codec_render(new_filepath)
if gen_raw_coarse:
show_history_prompt_size(history_prompt)
new_history = resize_history_prompt(history_prompt, tokens=128, from_front=False)
# print(api.history_prompt_detailed_report(full_generation))
# show_history_prompt_size(full_generation)
# maybe cut half or something so half a speaker?
coarse_tokens = generation.generate_coarse(
history_prompt["semantic_prompt"],
history_prompt=history_prompt,
use_kv_caching=True,
)
base = os.path.basename(filepath)
filename, extension = os.path.splitext(base)
suffix = "coarse_yes_his_"
new_filename = filename + suffix
new_filepath = os.path.join(os.path.dirname(new_filepath), new_filename + extension)
new_filepath = api.generate_unique_filepath(new_filepath)
np.savez(
new_filepath,
semantic_prompt=history_prompt["semantic_prompt"],
coarse_prompt=coarse_tokens,
fine_prompt=None,
)
quick_codec_render(new_filepath)
api.history_prompt_detailed_report(history_prompt)
# maybe cut half or something so half a speaker?
coarse_tokens = generation.generate_coarse(
history_prompt["semantic_prompt"], use_kv_caching=True
)
base = os.path.basename(filepath)
filename, extension = os.path.splitext(base)
suffix = "_course_no_his_"
new_filename = filename + suffix
new_filepath = os.path.join(os.path.dirname(new_filepath), new_filename + extension)
new_filepath = api.generate_unique_filepath(new_filepath)
np.savez(
new_filepath,
semantic_prompt=history_prompt["semantic_prompt"],
coarse_prompt=coarse_tokens,
fine_prompt=None,
)
quick_codec_render(new_filepath)
# missing at least two good tokens
soft_semantic = [2, 3, 4, 5, 10, 206]
# allowed_splits = [3,4,5,10]
# somehow actually works great
def segment_these_semantics_smartly_and_smoothly(
tokens,
soft_semantic,
split_threshold=4,
minimum_segment_size=64,
maximum_segment_size=768,
maximum_segment_size_split_threshold=1,
require_consecutive_split_tokens=True,
repetition_threshold=15,
):
segments = []
segment = []
split_counter = 0
max_split_counter = 0
repetition_counter = (
1 # start at 1 as the first token is the beginning of a potential repetition
)
last_token = None
last_token_was_split = False
for token in tokens:
segment.append(token)
if (
token == last_token
): # if this token is the same as the last one, increment the repetition counter
repetition_counter += 1
else: # otherwise, reset the repetition counter
repetition_counter = 1
if token in soft_semantic:
if not require_consecutive_split_tokens or (
require_consecutive_split_tokens and last_token_was_split
):
split_counter += 1
else:
split_counter = 1
max_split_counter = 0
last_token_was_split = True
else:
max_split_counter += 1
last_token_was_split = False
if (split_counter == split_threshold or repetition_counter == repetition_threshold) and len(
segment
) >= minimum_segment_size:
segments.append(segment)
segment = []
split_counter = 0
max_split_counter = 0
repetition_counter = 1 # reset the repetition counter after a segment split
elif len(segment) > maximum_segment_size:
if (
max_split_counter == maximum_segment_size_split_threshold
or maximum_segment_size_split_threshold == 0
):
segments.append(segment[:-max_split_counter])
segment = segment[-max_split_counter:]
split_counter = 0
max_split_counter = 0
last_token = token # update last_token at the end of the loop
if segment: # don't forget to add the last segment
segments.append(segment)
return segments
def quick_clone(file):
# file_name = ".".join(file.replace("\\", "/").split("/")[-1].split(".")[:-1])
# out_file = f"data/bark_custom_speakers/{file_name}.npz"
semantic_prompt = wav_to_semantics(file)
fine_prompt = generate_fine_from_wav(file)
coarse_prompt = generate_course_history(fine_prompt)
full_generation = {
"semantic_prompt": semantic_prompt,
"coarse_prompt": coarse_prompt,
"fine_prompt": fine_prompt,
}
return full_generation
def clone_voice(
audio_filepath,
input_audio_filename_secondary,
dest_filename,
speaker_as_clone_content=None,
progress=gradio.Progress(track_tqdm=True),
max_retries=2,
even_more_clones=False,
extra_blurry_clones=False,
audio_filepath_directory=None,
simple_clones_only=False,
):
old = generation.OFFLOAD_CPU
generation.OFFLOAD_CPU = False
dest_filename = sanitize_filename(dest_filename)
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
dir_path = Path("cloned_voices") / f"{dest_filename}_{timestamp}"
dir_path.mkdir(parents=True, exist_ok=True)
base_clone_subdir = Path(dir_path) / f"gen_0_clones"
base_clone_subdir.mkdir(parents=True, exist_ok=True)
starting_base_output_path = base_clone_subdir
starting_base_output_path = starting_base_output_path / f"{dest_filename}"
audio_filepath_files = []
if audio_filepath_directory is not None and audio_filepath_directory.strip() != "":
audio_filepath_files = os.listdir(audio_filepath_directory)
audio_filepath_files = [file for file in audio_filepath_files if file.endswith(".wav")]
audio_filepath_files = [
os.path.join(audio_filepath_directory, file) for file in audio_filepath_files
]
print(f"Found {len(audio_filepath_files)} audio files in {audio_filepath_directory}")
else:
audio_filepath_files = [audio_filepath]
for audio_num, audio_filepath in enumerate(audio_filepath_files):
if audio_filepath is None or not os.path.exists(audio_filepath):
print(f"The audio file {audio_filepath} does not exist. Please check the path.")
progress(0, f"The audio file {audio_filepath} does not exist. Please check the path.")
return
else:
print(f"Found the audio file {audio_filepath}.")
base_output_path = Path(f"{starting_base_output_path}_file{audio_num}.npz")
progress(0, desc="HuBERT Quantizer, Quantizing.")
default_prompt_width = 512
budget_prompt_width = 512
attempts = 0
orig_semantic_prompt = None
all_completed_clones = []
print(f"Cloning voice from {audio_filepath} to {dest_filename}")
if even_more_clones is True:
max_retries = 2
else:
max_retries = 1
while attempts < max_retries:
attempts += 1
# Step 1: Converting WAV to Semantics
progress(1, desc="Step 1 of 4: Converting WAV to Semantics")
print(f"attempt {attempts} of {max_retries}")
if attempts == 2:
semantic_prompt_tensor = wav_to_semantics(audio_filepath, alt_model)
else:
semantic_prompt_tensor = wav_to_semantics(audio_filepath)
orig_semantic_prompt = semantic_prompt_tensor
# semantic_prompt = semantic_prompt_tensor.numpy()
semantic_prompt = semantic_prompt_tensor
# Step 2: Generating Fine from WAV
progress(2, desc="Step 2 of 4: Generating Fine from WAV")
try:
fine_prompt = generate_fine_from_wav(audio_filepath)
except Exception as e:
print(f"Failed at step 2 with error: {e}")
continue
# Step 3: Generating Coarse History
progress(3, desc="Step 3 of 4: Generating Coarse History")
coarse_prompt = generate_course_history(fine_prompt)
# coarse_prompt = coarse_prompt.numpy()
# Building the history prompt
history_prompt = {
"semantic_prompt": semantic_prompt,
"coarse_prompt": coarse_prompt,
"fine_prompt": fine_prompt,
}
# print types of each
# print(f"semantic_prompt type: {type(semantic_prompt)}")
# print(f"coarse_prompt type: {type(coarse_prompt)}")
# print(f"fine_prompt type: {type(fine_prompt)}")
if not api.history_prompt_is_valid(history_prompt):
print("Primary prompt potentially problematic:")
print(api.history_prompt_detailed_report(history_prompt))
attempt_string = f"_{attempts}"
attempt_string = f""
if attempts == 2:
# attempt_string = f"{attempt_string}a"
attempt_string = f"_x"
output_path = base_output_path.with_stem(base_output_path.stem + attempt_string)
# full_output_path = output_path.with_stem(output_path.stem + "_FULLAUDIOCLIP")
# write_clone_npz(str(full_output_path), history_prompt)
# The back of audio is generally the best speaker by far, as the user specifically chose this audio clip and it likely has a natural ending.
# If you had to choose one the front of the clip is bit different style and decent, though cutting randomly so
# it has a high chance of being terrible.
progress(4, desc="\nSegmenting A Little More Smoothy Now...\n")
print(f"Segmenting A Little More Smoothy Now...")
full_output_path = output_path.with_stem(output_path.stem + "_FULL_LENGTH_AUDIO")
write_clone_npz(str(full_output_path), history_prompt)
full = load_npz(str(full_output_path))
# print(f"{show_history_prompt_size(full, token_samples=128)}")
# The back of clip generally the best speaker, as the user specifically chose this audio clip and it likely has a natural ending.
clip_full_semantic_length = len(semantic_prompt)
back_history_prompt = resize_history_prompt(
history_prompt, tokens=768, from_front=False
)
back_output_path = output_path.with_stem(output_path.stem + "__ENDCLIP")
write_clone_npz(
str(back_output_path), back_history_prompt, regen_fine=extra_blurry_clones
)
all_completed_clones.append(
(
back_history_prompt,
str(back_output_path),
clip_full_semantic_length - 768,
)
)
# thought this would need to be more sophisticated, maybe this is ok
split_semantic_segments = [semantic_prompt]
if not simple_clones_only:
split_semantic_segments = segment_these_semantics_smartly_and_smoothly(
semantic_prompt,
soft_semantic,
split_threshold=3,
minimum_segment_size=96,
maximum_segment_size=768,
maximum_segment_size_split_threshold=1,
require_consecutive_split_tokens=True,
repetition_threshold=9,
)
else:
print(f"Skipping smart segmentation, using single file instead.")
clone_start = 0
segment_number = 1
# while clone_end < clip_full_semantic_length + semantic_step_interval:
for idx, semantic_segment_smarter_seg in enumerate(split_semantic_segments):
semantic_segment_smarter_seg_len = len(semantic_segment_smarter_seg)
current_slice = clone_start + semantic_segment_smarter_seg_len
# segment_movement_so_far = current_slice
clone_start = current_slice
sliced_history_prompt = resize_history_prompt(
history_prompt, tokens=current_slice, from_front=True
)
sliced_history_prompt = resize_history_prompt(
sliced_history_prompt, tokens=budget_prompt_width, from_front=False
)
if api.history_prompt_is_valid(sliced_history_prompt):
# segment_output_path = output_path.with_stem(output_path.stem + f"_s_{current_slice}")
segment_output_path = output_path.with_stem(
output_path.stem + f"_{segment_number}"
)
else:
print(f"segment {segment_number} potentially problematic:")
# print(api.history_prompt_detailed_report(sliced_history_prompt))
sliced_history_prompt = resize_history_prompt(
sliced_history_prompt,
tokens=budget_prompt_width - 1,
from_front=False,
)
if api.history_prompt_is_valid(sliced_history_prompt):
# segment_output_path = output_path.with_stem(output_path.stem + f"_s_{current_slice}")
segment_output_path = output_path.with_stem(
output_path.stem + f"_{segment_number}"
)
else:
print(f"segment {segment_number} still potentially problematic:")
# print(api.history_prompt_detailed_report(sliced_history_prompt))
continue
write_clone_npz(
str(segment_output_path),
sliced_history_prompt,
regen_fine=extra_blurry_clones,
)
segment_number += 1
all_completed_clones.append(
(sliced_history_prompt, str(segment_output_path), current_slice)
)
if attempts == 1 and False:
original_audio_filepath_ext = Path(audio_filepath).suffix
copy_of_original_target_audio_file = (
dir_path / f"{dest_filename}_TARGET_ORIGINAL_audio.wav"
)
copy_of_original_target_audio_file = api.generate_unique_filepath(
str(copy_of_original_target_audio_file)
)
print(
f"Copying original clone audio sample from {audio_filepath} to {copy_of_original_target_audio_file}"
)
shutil.copyfile(audio_filepath, str(copy_of_original_target_audio_file))
progress(5, desc="Base Voice Clones Done")
print(f"Finished cloning voice from {audio_filepath} to {dest_filename}")
# TODO just an experiment, doesn't seem to help though
orig_semantic_prompt = orig_semantic_prompt.numpy()
import random
print(f"input_audio_filename_secondary: {input_audio_filename_secondary}")
if input_audio_filename_secondary is not None:
progress(5, desc="Generative Clones, Long Clip, Lots of randomness")
second_sample_prompt = None
if input_audio_filename_secondary is not None:
progress(
5,
desc="Step 5 of 5: Converting Secondary Audio sample to Semantic Prompt",
)
second_sample_tensor = wav_to_semantics(input_audio_filename_secondary)
second_sample_prompt = second_sample_tensor.numpy()
if len(second_sample_prompt) > 850:
second_sample_prompt = second_sample_prompt[
:850
] # Actually from front, makes sense
orig_semantic_prompt_len = len(orig_semantic_prompt)
generation.OFFLOAD_CPU = old
generation.preload_models()
generation.clean_models()
total_clones = len(all_completed_clones)
clone_num = 0
for clone, filepath, end_slice in all_completed_clones:
clone_num += 1
clone_history = load_npz(filepath) # lazy tensor to numpy...
progress(5, desc=f"Generating {clone_num} of {total_clones}")
if api.history_prompt_is_valid(clone_history):
end_of_prompt = end_slice + budget_prompt_width
if end_of_prompt > orig_semantic_prompt_len:
semantic_next_segment = orig_semantic_prompt # use beginning
else:
semantic_next_segment = orig_semantic_prompt[
-(orig_semantic_prompt_len - end_slice) :
]
prompts = []
if second_sample_prompt is not None:
prompts.append(second_sample_prompt)
if even_more_clones:
prompts.append(semantic_next_segment)
for semantic_next_segment in prompts:
# print(f"Shape of semantic_next_segment: {semantic_next_segment.shape}")
if len(semantic_next_segment) > 800:
semantic_next_segment = semantic_next_segment[:800]
chop1 = random.randint(32, 128)
chop2 = random.randint(64, 192)
chop3 = random.randint(128, 256)
chop_sizes = [chop1, chop2, chop3]
chop = random.choice(chop_sizes)
if chop == 0:
chop_his = None
else:
chop_his = resize_history_prompt(
clone_history, tokens=chop, from_front=False
)
coarse_tokens = api.generate_coarse(
semantic_next_segment,
history_prompt=chop_his,
temp=0.7,
silent=False,
use_kv_caching=True,
)
fine_tokens = api.generate_fine(
coarse_tokens,
history_prompt=chop_his,
temp=0.5,
)
full_generation = {
"semantic_prompt": semantic_next_segment,
"coarse_prompt": coarse_tokens,
"fine_prompt": fine_tokens,
}
if api.history_prompt_is_valid(full_generation):
base = os.path.basename(filepath)
filename, extension = os.path.splitext(base)
suffix = f"g2_{chop}_"
new_filename = filename + suffix
new_filepath = os.path.join(
os.path.dirname(filepath), new_filename + extension
)
new_filepath = api.generate_unique_filepath(new_filepath)
write_clone_npz(new_filepath, full_generation)
# messy, really bark infinity should sample from different spaces in huge npz files, no reason to cut like this.
suffix = f"g2f_{chop}_"
full_generation = resize_history_prompt(
full_generation, tokens=budget_prompt_width, from_front=True
)
new_filename = filename + suffix
new_filepath = os.path.join(
os.path.dirname(filepath), new_filename + extension
)
new_filepath = api.generate_unique_filepath(new_filepath)
write_clone_npz(new_filepath, full_generation)
tiny_history_addition = resize_history_prompt(
full_generation, tokens=128, from_front=True
)
merged = merge_history_prompts(
chop_his, tiny_history_addition, right_size=128
)
suffix = f"g2t_{chop}_"
full_generation = resize_history_prompt(
merged, tokens=budget_prompt_width, from_front=False
)
new_filename = filename + suffix
new_filepath = os.path.join(
os.path.dirname(filepath), new_filename + extension
)
new_filepath = api.generate_unique_filepath(new_filepath)
write_clone_npz(new_filepath, full_generation)
else:
print(f"Full generation for {filepath} was invalid, skipping")
print(api.history_prompt_detailed_report(full_generation))
else:
print(f"Clone {filepath} was invalid, skipping")
print(api.history_prompt_detailed_report(clone_history))
print(f"Generation 0 clones completed. You'll find your clones at: {base_clone_subdir}")
# restore previous CPU offload state
generation.OFFLOAD_CPU = old
generation.clean_models()
generation.preload_models() # ?
return f"{base_clone_subdir}"
def quick_codec_render(filepath):
reload = load_npz(filepath) # lazy
if "fine_prompt" in reload:
fine_prompt = reload["fine_prompt"]
if fine_prompt is not None and fine_prompt.shape[0] >= 8 and fine_prompt.shape[1] >= 1:
audio_arr = generation.codec_decode(fine_prompt)
base = os.path.basename(filepath)
filename, extension = os.path.splitext(base)
new_filepath = os.path.join(os.path.dirname(filepath), filename + "_f.mp4")
new_filepath = api.generate_unique_filepath(new_filepath)
api.write_audiofile(new_filepath, audio_arr, output_format="mp4")
else:
print(f"Fine prompt was invalid, skipping")
print(show_history_prompt_size(reload))
if "coarse_prompt" in reload:
coarse_prompt = reload["coarse_prompt"]
if (
coarse_prompt is not None
and coarse_prompt.ndim == 2
and coarse_prompt.shape[0] >= 2
and coarse_prompt.shape[1] >= 1
):
audio_arr = generation.codec_decode(coarse_prompt)
base = os.path.basename(filepath)
filename, extension = os.path.splitext(base)
new_filepath = os.path.join(os.path.dirname(filepath), filename + "_co.mp4")
new_filepath = api.generate_unique_filepath(new_filepath)
api.write_audiofile(new_filepath, audio_arr, output_format="mp4")
else:
print(f"Coarse prompt was invalid, skipping")
print(show_history_prompt_size(reload))
"""
def load_hubert():
HuBERTManager.make_sure_hubert_installed()
HuBERTManager.make_sure_tokenizer_installed()
if 'hubert' not in huberts:
hubert_path = './bark_infinity/hubert/hubert.pt'
print('Loading HuBERT')
huberts['hubert'] = CustomHubert(hubert_path)
if 'tokenizer' not in huberts:
tokenizer_path = './bark_infinity/hubert/tokenizer.pth'
print('Loading Custom Tokenizer')
tokenizer = CustomTokenizer()
tokenizer.load_state_dict(torch.load(tokenizer_path)) # Load the model
huberts['tokenizer'] = tokenizer
"""
huberts = {}
bark_cloning_large_model = True #
def load_hubert(alt_model=None, force_reload=True):
hubert_path = HuBERTManager.make_sure_hubert_installed()
model = (
("quantifier_V1_hubert_base_ls960_23.pth", "tokenizer_large.pth")
if bark_cloning_large_model
else ("quantifier_hubert_base_ls960_14.pth", "tokenizer.pth")
)
tokenizer_path = None
if alt_model is not None:
model = (alt_model["model"], alt_model["tokenizer_name"])
tokenizer_path = HuBERTManager.make_sure_tokenizer_installed(
model=model[0], local_file=model[1], repo=alt_model["repo"]
)
else:
tokenizer_path = HuBERTManager.make_sure_tokenizer_installed(
model=model[0], local_file=model[1]
)
if "hubert" not in huberts:
print(f"Loading HuBERT models {model} from {hubert_path}")
# huberts["hubert"] = CustomHubert(hubert_path)
huberts["hubert"] = CustomHubert(hubert_path, device=torch.device("cpu"))
if "tokenizer" not in huberts or force_reload:
# print('Loading Custom Tokenizer')
# print(f'Loading tokenizer from {tokenizer_path}')
tokenizer = CustomTokenizer.load_from_checkpoint(
tokenizer_path, map_location=torch.device("cpu")
)
huberts["tokenizer"] = tokenizer
def generate_course_history(fine_history):
return fine_history[:2, :]
# TODO don't hardcode GPU
"""
def generate_fine_from_wav(file):
model = load_codec_model(use_gpu=True) # Don't worry about reimporting, it stores the loaded model in a dict
wav, sr = torchaudio.load(file)
wav = convert_audio(wav, sr, SAMPLE_RATE, model.channels)
wav = wav.unsqueeze(0).to('cuda')
with torch.no_grad():
encoded_frames = model.encode(wav)
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze()
codes = codes.cpu().numpy()
return codes
"""
clone_use_gpu = False
def generate_fine_from_wav(file):
# model = load_codec_model(use_gpu=not args.bark_use_cpu) # Don't worry about reimporting, it stores the loaded model in a dict
model = load_codec_model(
use_gpu=False
) # Don't worry about reimporting, it stores the loaded model in a dict
wav, sr = torchaudio.load(file)
wav = convert_audio(wav, sr, SAMPLE_RATE, model.channels)
wav = wav.unsqueeze(0)
# if not (args.bark_cpu_offload or args.bark_use_cpu):
if False:
wav = wav.to("cuda")
with torch.no_grad():
encoded_frames = model.encode(wav)
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze()
codes = codes.cpu().numpy()
return codes
def wav_to_semantics(file, alt_model=None) -> torch.Tensor:
# Vocab size is 10,000.
if alt_model is None:
load_hubert()
else:
load_hubert(alt_model=alt_model, force_reload=True)
# check file extension and set
# format = None
# audio_extension = os.path.splitext(file)[1]
# format = audio_extension
# print(f"Loading {file} as {format}")
wav, sr = torchaudio.load(file)
# wav, sr = torchaudio.load(file, format=f"{format}")
# sr, wav = wavfile.read(file)
# wav = torch.tensor(wav, dtype=torch.float32)
if wav.shape[0] == 2: # Stereo to mono if needed
wav = wav.mean(0, keepdim=True)
# Extract semantics in HuBERT style
# print('Extracting and Tokenizing Semantics')
print("Clones Inbound...")
semantics = huberts["hubert"].forward(wav, input_sample_hz=sr)
# print('Tokenizing...')
tokens = huberts["tokenizer"].get_token(semantics)
return tokens
import copy
from collections import Counter
from contextlib import contextmanager
def load_npz(filename):
npz_data = np.load(filename, allow_pickle=True)
data_dict = {
"semantic_prompt": npz_data["semantic_prompt"],
"coarse_prompt": npz_data["coarse_prompt"],
"fine_prompt": npz_data["fine_prompt"],
}
npz_data.close()
return data_dict
def resize_history_prompt(history_prompt, tokens=128, from_front=False):
semantic_to_coarse_ratio = COARSE_RATE_HZ / SEMANTIC_RATE_HZ
semantic_prompt = history_prompt["semantic_prompt"]
coarse_prompt = history_prompt["coarse_prompt"]
fine_prompt = history_prompt["fine_prompt"]
new_semantic_len = min(tokens, len(semantic_prompt))
new_coarse_len = min(int(new_semantic_len * semantic_to_coarse_ratio), coarse_prompt.shape[1])
new_fine_len = new_coarse_len
if from_front:
new_semantic_prompt = semantic_prompt[:new_semantic_len]
new_coarse_prompt = coarse_prompt[:, :new_coarse_len]
new_fine_prompt = fine_prompt[:, :new_fine_len]
else:
new_semantic_prompt = semantic_prompt[-new_semantic_len:]
new_coarse_prompt = coarse_prompt[:, -new_coarse_len:]
new_fine_prompt = fine_prompt[:, -new_fine_len:]
return {
"semantic_prompt": new_semantic_prompt,
"coarse_prompt": new_coarse_prompt,
"fine_prompt": new_fine_prompt,
}
def show_history_prompt_size(
history_prompt, token_samples=3, semantic_back_n=128, text="history_prompt"
):
semantic_prompt = history_prompt["semantic_prompt"]
coarse_prompt = history_prompt["coarse_prompt"]
fine_prompt = history_prompt["fine_prompt"]
# compute the ratio for coarse and fine back_n
ratio = 75 / 49.9
coarse_and_fine_back_n = int(semantic_back_n * ratio)
def show_array_front_back(arr, n, back_n):
if n > 0:
front = arr[:n].tolist()
back = arr[-n:].tolist()
mid = []
if len(arr) > back_n + token_samples:
mid = arr[-back_n - token_samples : -back_n + token_samples].tolist()
if mid:
return f"{front} ... <{back_n} from end> {mid} ... {back}"
else:
return f"{front} ... {back}"
else:
return ""
def most_common_tokens(arr, n=3):
flattened = arr.flatten()
counter = Counter(flattened)
return counter.most_common(n)
print(f"\n{text}")
print(f" {text} semantic_prompt: {semantic_prompt.shape}")
print(f" Tokens: {show_array_front_back(semantic_prompt, token_samples, semantic_back_n)}")
print(f" Most common tokens: {most_common_tokens(semantic_prompt)}")
print(f" {text} coarse_prompt: {coarse_prompt.shape}")
for i, row in enumerate(coarse_prompt):
print(
f" Row {i} Tokens: {show_array_front_back(row, token_samples, coarse_and_fine_back_n)}"
)
print(f" Most common tokens in row {i}: {most_common_tokens(row)}")
print(f" {text} fine_prompt: {fine_prompt.shape}")
# for i, row in enumerate(fine_prompt):
# print(f" Row {i} Tokens: {show_array_front_back(row, token_samples, coarse_and_fine_back_n)}")
# print(f" Most common tokens in row {i}: {most_common_tokens(row)}")
def split_array_equally(array, num_parts):
split_indices = np.linspace(0, len(array), num_parts + 1, dtype=int)
return [
array[split_indices[i] : split_indices[i + 1]].astype(np.int32) for i in range(num_parts)
]
@contextmanager
def measure_time(text=None, index=None):
start_time = time.time()
yield
elapsed_time = time.time() - start_time
if index is not None and text is not None:
text = f"{text} {index}"
elif text is None:
text = "Operation"
time_finished = (
f"{text} Finished at: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))}"
)
print(f" -->{time_finished} in {elapsed_time} seconds")
def compare_history_prompts(hp1, hp2, text="history_prompt"):
print(f"\nComparing {text}")
for key in hp1.keys():
if hp1[key].shape != hp2[key].shape:
print(f" {key} arrays have different shapes: {hp1[key].shape} vs {hp2[key].shape}.")
min_size = min(hp1[key].shape[0], hp2[key].shape[0])
if hp1[key].ndim == 1:
hp1_part = hp1[key][-min_size:]
hp2_part = hp2[key][-min_size:]
else:
min_size = min(hp1[key].shape[1], hp2[key].shape[1])
hp1_part = hp1[key][:, -min_size:]
hp2_part = hp2[key][:, -min_size:]
print(f" Comparing the last {min_size} elements of each.")
else:
hp1_part = hp1[key]
hp2_part = hp2[key]
if np.array_equal(hp1_part, hp2_part):
print(f" {key} arrays are exactly the same.")
elif np.allclose(hp1_part, hp2_part):
diff = np.linalg.norm(hp1_part - hp2_part)
print(f" {key} arrays are almost equal with a norm of difference: {diff}")
else:
diff = np.linalg.norm(hp1_part - hp2_part)
print(f" {key} arrays are not equal. Norm of difference: {diff}")
def split_by_words(text, word_group_size):
words = text.split()
result = []
group = ""
for i, word in enumerate(words):
group += word + " "
if (i + 1) % word_group_size == 0:
result.append(group.strip())
group = ""
# Add the last group if it's not empty
if group.strip():
result.append(group.strip())
return result
def concat_history_prompts(history_prompt1, history_prompt2):
new_semantic_prompt = np.hstack(
[history_prompt1["semantic_prompt"], history_prompt2["semantic_prompt"]]
).astype(
np.int32
) # not int64?
new_coarse_prompt = np.hstack(
[history_prompt1["coarse_prompt"], history_prompt2["coarse_prompt"]]
).astype(np.int32)
new_fine_prompt = np.hstack(
[history_prompt1["fine_prompt"], history_prompt2["fine_prompt"]]
).astype(np.int32)
concatenated_history_prompt = {
"semantic_prompt": new_semantic_prompt,
"coarse_prompt": new_coarse_prompt,
"fine_prompt": new_fine_prompt,
}
return concatenated_history_prompt
def merge_history_prompts(left_history_prompt, right_history_prompt, right_size=128):
right_history_prompt = resize_history_prompt(
right_history_prompt, tokens=right_size, from_front=False
)
combined_history_prompts = concat_history_prompts(left_history_prompt, right_history_prompt)
combined_history_prompts = resize_history_prompt(
combined_history_prompts, tokens=341, from_front=False
)
return combined_history_prompts
|