File size: 5,912 Bytes
c6919c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# benchmark.py

import numpy as np
from time import time
import torch


def numpy_benchmark():
    np.random.seed(0)  # for reproducibility

    size = 4096
    A, B = np.random.random((size, size)), np.random.random((size, size))
    C, D = np.random.random((size * 1280,)), np.random.random(
        (size * 1280,)
    )  # increase vector size for benchmark
    E = np.random.random((int(size / 2), int(size / 4)))
    F = np.random.random((int(size / 2), int(size / 2)))
    F = np.dot(F, F.T)
    G = np.random.random((int(size / 2), int(size / 2)))
    H = np.random.random((size, size))
    I = np.random.random((int(size), int(size)))

    print("\nNUMPY CONFIGURATION:")
    print(np.show_config())

    print("\nNUMPY BENCHMARK RESULTS:")

    t0 = time()
    # Matrix multiplication
    N = 20
    t = time()
    for i in range(N):
        np.dot(A, B)
    delta = time() - t
    print(f"1. Dotted two {size}x{size} matrices in {delta / N:.3f} s.")
    del A, B

    # Vector multiplication
    N = 5000
    t = time()
    for i in range(N):
        np.dot(C, D)
    delta = time() - t
    print(f"2. Dotted two vectors of length {size * 1280} in {1e3 * delta / N:.3f} ms.")
    del C, D

    # Singular Value Decomposition (SVD)
    N = 3
    t = time()
    for i in range(N):
        np.linalg.svd(E, full_matrices=False)
    delta = time() - t
    print(f"3. SVD of a {size // 2}x{size // 4} matrix in {delta / N:.3f} s.")
    del E

    # Cholesky Decomposition
    N = 3
    t = time()
    for i in range(N):
        np.linalg.cholesky(F)
    delta = time() - t
    print(f"4. Cholesky decomposition of a {size // 2}x{size // 2} matrix in {delta / N:.3f} s.")

    # Eigendecomposition
    t = time()
    for i in range(N):
        np.linalg.eig(G)
    delta = time() - t
    print(f"5. Eigendecomposition of a {size // 2}x{size // 2} matrix in {delta / N:.3f} s.")

    # compute covariance matrix
    N = 10
    t = time()
    for i in range(N):
        np.dot(H.T, H)
    delta = time() - t
    print(f"6. Computing Covariance Matrix of a {size}x{size} matrix in {delta / N:.4f} s.")

    # compute inverse matrix
    N = 3
    t = time()
    for i in range(N):
        np.linalg.inv(I)
    delta = time() - t
    print(f"7. Inverse Matrix of a {size}x{size} matrix in {delta / N:.4f} s.")

    # Gradient calculation
    N, D_in, H, D_out = 64, 1000, 100, 10
    x = np.random.randn(N, D_in)
    y = np.random.randn(N, D_out)
    w1 = np.random.randn(D_in, H)
    w2 = np.random.randn(H, D_out)
    learning_rate = 1e-6

    t = time()
    for _ in range(10000):
        h = x.dot(w1)
        h_relu = np.maximum(h, 0)
        y_pred = h_relu.dot(w2)
        loss = np.square(y_pred - y).sum()
        grad_y_pred = 2.0 * (y_pred - y)
        grad_w2 = h_relu.T.dot(grad_y_pred)
        grad_h_relu = grad_y_pred.dot(w2.T)
        grad_h = grad_h_relu.copy()
        grad_h[h < 0] = 0
        grad_w1 = x.T.dot(grad_h)
        w1 -= learning_rate * grad_w1
        w2 -= learning_rate * grad_w2
    delta = time() - t
    print(f"8. Gradient calculation time: {delta:.3f} s.")

    J = np.random.rand(size * 1280)
    t = time()
    N = 5
    for _ in range(N):
        sorted_indices = np.argsort(J)[::-1]
        cumulative_probs = np.cumsum(sorted_indices)
        sorted_indices_to_remove = cumulative_probs > np.random.rand()
        sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
        sorted_indices_to_remove[0] = False
        J[sorted_indices[sorted_indices_to_remove]] = -np.inf
    delta = time() - t
    print(
        f"9. np.argsort and np.cumsum on a vector of length {size*1280} in {1e3 * delta / N:.3f} ms."
    )
    del J

    K, L = np.random.random((size, 1)), np.random.random((1, size))
    t = time()
    N = 200
    for _ in range(N):
        M = K * L
    delta = time() - t
    print(f"10. Broadcasting two vectors of length {size} in {1e3 * delta / N:.3f} ms.")
    del K, L, M

    N = np.random.random((size, size))
    indices = np.random.randint(size, size=(size,))
    t = time()
    M = 200
    for _ in range(M):
        O = N[indices, :]
    delta = time() - t
    print(f"11. Indexing a {size}x{size} matrix in {1e3 * delta / M:.3f} ms.")
    del N, O

    P = np.random.random((size, size))
    t = time()
    M = 100
    for _ in range(M):
        s = np.sum(P)
    delta = time() - t
    print(f"12. Sum reduction of a {size}x{size} matrix in {1e3 * delta / M:.3f} ms.")
    del P

    Q = np.random.random((size, size))
    R = torch.tensor(Q)

    # Numpy to PyTorch
    t = time()
    N = 100
    for _ in range(N):
        R = torch.from_numpy(Q)
    delta = time() - t
    print(
        f"13. Conversion of a Numpy {size}x{size} matrix to PyTorch tensor in {1e3 * delta / N:.3f} ms."
    )

    # PyTorch to Numpy
    t = time()
    for _ in range(N):
        Q_new = R.numpy()
    delta = time() - t
    print(
        f"14. Conversion of a PyTorch tensor {size}x{size} to Numpy array in {1e3 * delta / N:.3f} ms."
    )
    del Q, R

    # Benchmark for conversion operations
    Q = np.random.random((size, size)).astype(np.float32)
    R = torch.tensor(Q)

    # Numpy to PyTorch with forced copy via type conversion
    t = time()
    N = 100
    for _ in range(N):
        R = torch.tensor(Q, dtype=torch.float64)
    delta = time() - t
    print(
        f"15. Conversion of a Numpy {size}x{size} matrix to PyTorch tensor with forced copy in {1e3 * delta / N:.3f} ms."
    )

    # PyTorch to Numpy with forced copy via operation that doesn't change data
    t = time()
    for _ in range(N):
        Q_new = (R + 0).numpy()
    delta = time() - t
    print(
        f"16. Conversion of a PyTorch tensor {size}x{size} to Numpy array with forced copy in {1e3 * delta / N:.3f} ms."
    )
    del Q, R

    t1 = time()
    print(f"\nTotal time: {t1 - t0:.3f}s \n\n")


if __name__ == "__main__":
    numpy_benchmark()