Spaces:
Runtime error
Runtime error
# We need this so Python doesn't complain about the unknown StableDiffusionProcessing-typehint at runtime | |
from __future__ import annotations | |
import csv | |
import os | |
import os.path | |
import typing | |
import collections.abc as abc | |
import tempfile | |
import shutil | |
#if typing.TYPE_CHECKING: | |
# # Only import this when code is being type-checked, it doesn't have any effect at runtime | |
# from .processing import StableDiffusionProcessing | |
class PromptTransformation(typing.NamedTuple): | |
name: str | |
regex: str | |
replacement: str | |
flags: str | |
long_description: str | |
def merge_prompts(transformation_prompt: str, prompt: str) -> str: | |
if "{prompt}" in transformation_prompt: | |
res = transformation_prompt.replace("{prompt}", prompt) | |
else: | |
parts = filter(None, (prompt.strip(), transformation_prompt.strip())) | |
res = ", ".join(parts) | |
return res | |
import re | |
def apply_rule_to_prompt(rule, text): | |
regex = rule.regex | |
replacement = rule.replacement | |
flags = 0 | |
if 'MULTILINE' in rule.flags: | |
flags |= re.MULTILINE | |
return re.sub(regex, replacement, text, flags=flags) | |
def apply_transformations_to_prompt(prompt, transformations): | |
for transformation in transformations: | |
#print(f"Applying transformation {transformation.name}, regex: {transformation.regex}, replacement: {transformation.replacement}, flags: {transformation.flags}") | |
#print(f"Before: {prompt}") | |
prompt = apply_rule_to_prompt(transformation, prompt) | |
return prompt | |
class TransformationDatabase: | |
def __init__(self, path: str, user_path: str): | |
self.no_transformation = PromptTransformation("None", "", "", "","") | |
self.transformations = {} | |
self.path = path | |
self.user_path = user_path | |
#print(path) | |
self.reload() | |
def reload(self): | |
self.transformations.clear() | |
if not os.path.exists(self.path): | |
print(f"Can't find transformations at {self.path}") | |
else: | |
with open(self.path, "r", encoding="utf-8-sig", newline='') as file: | |
reader = csv.DictReader(file) | |
for row in reader: | |
#print(f"row: {row}") | |
# Support loading old CSV format with "name, text"-columns | |
regex = row["regex"] | |
replacement = row.get("replacement", "") | |
flags = row.get("flags", "") | |
long_description = row.get("long_description", "") | |
self.transformations[row["name"]] = PromptTransformation(row["name"], regex, replacement, flags, long_description) | |
if not os.path.exists(self.user_path): | |
print(f"Can't find transformations at {self.user_path}") | |
else: | |
with open(self.user_path, "r", encoding="utf-8-sig", newline='') as file: | |
reader = csv.DictReader(file) | |
for row in reader: | |
#print(f"row: {row}") | |
# Support loading old CSV format with "name, text"-columns | |
regex = row["regex"] | |
replacement = row.get("replacement", "") | |
flags = row.get("flags", "") | |
self.transformations[row["name"]] = PromptTransformation(row["name"], regex, replacement, flags, long_description) | |
#def get_transformation_prompts(self, transformations): | |
# return [self.transformations.get(x, self.no_transformation).prompt for x in transformations] | |
def apply_transformations_to_prompt(self, prompt, transformations): | |
return apply_transformations_to_prompt(prompt, [self.transformations.get(x, self.no_transformation) for x in transformations]) | |
def save_transformations(self, path: str) -> None: | |
# Always keep a backup file around | |
if os.path.exists(path): | |
shutil.copy(path, path + ".bak") | |
fd = os.open(path, os.O_RDWR|os.O_CREAT) | |
with os.fdopen(fd, "w", encoding="utf-8-sig", newline='') as file: | |
# _fields is actually part of the public API: typing.NamedTuple is a replacement for collections.NamedTuple, | |
# and collections.NamedTuple has explicit documentation for accessing _fields. Same goes for _asdict() | |
writer = csv.DictWriter(file, fieldnames=PromptTransformation._fields) | |
writer.writeheader() | |
writer.writerows(transformation._asdict() for k, transformation in self.transformations.items()) | |