# We need this so Python doesn't complain about the unknown StableDiffusionProcessing-typehint at runtime from __future__ import annotations import csv import os import os.path import typing import collections.abc as abc import tempfile import shutil #if typing.TYPE_CHECKING: # # Only import this when code is being type-checked, it doesn't have any effect at runtime # from .processing import StableDiffusionProcessing class PromptTransformation(typing.NamedTuple): name: str regex: str replacement: str flags: str long_description: str def merge_prompts(transformation_prompt: str, prompt: str) -> str: if "{prompt}" in transformation_prompt: res = transformation_prompt.replace("{prompt}", prompt) else: parts = filter(None, (prompt.strip(), transformation_prompt.strip())) res = ", ".join(parts) return res import re def apply_rule_to_prompt(rule, text): regex = rule.regex replacement = rule.replacement flags = 0 if 'MULTILINE' in rule.flags: flags |= re.MULTILINE return re.sub(regex, replacement, text, flags=flags) def apply_transformations_to_prompt(prompt, transformations): for transformation in transformations: #print(f"Applying transformation {transformation.name}, regex: {transformation.regex}, replacement: {transformation.replacement}, flags: {transformation.flags}") #print(f"Before: {prompt}") prompt = apply_rule_to_prompt(transformation, prompt) return prompt class TransformationDatabase: def __init__(self, path: str, user_path: str): self.no_transformation = PromptTransformation("None", "", "", "","") self.transformations = {} self.path = path self.user_path = user_path #print(path) self.reload() def reload(self): self.transformations.clear() if not os.path.exists(self.path): print(f"Can't find transformations at {self.path}") else: with open(self.path, "r", encoding="utf-8-sig", newline='') as file: reader = csv.DictReader(file) for row in reader: #print(f"row: {row}") # Support loading old CSV format with "name, text"-columns regex = row["regex"] replacement = row.get("replacement", "") flags = row.get("flags", "") long_description = row.get("long_description", "") self.transformations[row["name"]] = PromptTransformation(row["name"], regex, replacement, flags, long_description) if not os.path.exists(self.user_path): print(f"Can't find transformations at {self.user_path}") else: with open(self.user_path, "r", encoding="utf-8-sig", newline='') as file: reader = csv.DictReader(file) for row in reader: #print(f"row: {row}") # Support loading old CSV format with "name, text"-columns regex = row["regex"] replacement = row.get("replacement", "") flags = row.get("flags", "") self.transformations[row["name"]] = PromptTransformation(row["name"], regex, replacement, flags, long_description) #def get_transformation_prompts(self, transformations): # return [self.transformations.get(x, self.no_transformation).prompt for x in transformations] def apply_transformations_to_prompt(self, prompt, transformations): return apply_transformations_to_prompt(prompt, [self.transformations.get(x, self.no_transformation) for x in transformations]) def save_transformations(self, path: str) -> None: # Always keep a backup file around if os.path.exists(path): shutil.copy(path, path + ".bak") fd = os.open(path, os.O_RDWR|os.O_CREAT) with os.fdopen(fd, "w", encoding="utf-8-sig", newline='') as file: # _fields is actually part of the public API: typing.NamedTuple is a replacement for collections.NamedTuple, # and collections.NamedTuple has explicit documentation for accessing _fields. Same goes for _asdict() writer = csv.DictWriter(file, fieldnames=PromptTransformation._fields) writer.writeheader() writer.writerows(transformation._asdict() for k, transformation in self.transformations.items())