Spaces:
Runtime error
Runtime error
from huggingface_hub import InferenceClient | |
import gradio as gr | |
import os | |
import re | |
# Get secret (HF_TOKEN) | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
#HTML/CSS stuff | |
DESCRIPTION = """ | |
<div> | |
<h1 style="text-align: center;">Llama 3 Poem Analysis (Work-in-progress)</h1> | |
<p><h2>Copy-paste poem into textbox --> get Llama 3-generated commentary *hallucinations likely*</h2></p> | |
</div> | |
""" | |
LICENSE = """ | |
<p/> | |
--- | |
Built with Meta Llama 3 | |
""" | |
#Not being used currently; having trouble integrating as a gr.Textbox in the params to gr.ChatInterface framework (end) | |
PLACEHOLDER = """ | |
<div> | |
<img src="TBD" style="opacity: 0.55; "> | |
</div> | |
""" | |
css = """ | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
""" | |
#Initialize Llama as model; using InferenceClient for speed | |
client = InferenceClient( | |
"meta-llama/Meta-Llama-3-8B-Instruct" | |
) | |
#Get few-shot samples from PoemAnalysisSamples.txt | |
with open("PoemAnalysisSamples.txt", 'r') as f: | |
sample_poems = f.read() | |
pairs = re.findall(r'<poem>(.*?)</poem>\s*<response>(.*?)</response>', sample_poems, re.DOTALL) | |
#System message to initialize poetry assistant | |
sys_message = """ | |
Assistant provides detailed analysis of poems following the format of the few-shot samples given. Assistant uses the following poetic terms and concepts to describe poem entered by user: simile, metaphor, metonymy, imagery, synecdoche, meter, diction, end rhyme, internal rhyme, and slant rhyme." | |
""" | |
#Helper function for formatting | |
def format_prompt(message, history): | |
"""Formats the prompt for the LLM | |
Args: | |
message: current user text entry | |
history: conversation history tracked by Gradio | |
Returns: | |
prompt: formatted properly for inference | |
""" | |
#Start with system message in Llama 3 message format: https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/ | |
prompt=f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>{sys_message}<|eot_id|>" | |
#Unpack the user and assistant messages from few-shot samples | |
for poem, response in pairs: | |
prompt+=f"<|start_header_id|>user<|end_header_id|>{poem}<|eot_id|>" | |
prompt+=f"<|start_header_id|>assistant<|end_header_id|>{response}<|eot_id|>" | |
#Unpack the conversation history stored by Gradio | |
for user_prompt, bot_response in history: | |
prompt+=f"<|start_header_id|>user<|end_header_id|>{user_prompt}<|eot_id|>" | |
prompt+=f"<|start_header_id|>assistant<|end_header_id|>{bot_response}<|eot_id|>" | |
#Add new message | |
prompt+=f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>{message}<|eot_id|><|begin_of_text|><|start_header_id|>assistant<|end_header_id|>" | |
return prompt | |
#Function to generate LLM response | |
def generate( | |
prompt, history, temperature=0.1, max_new_tokens=1024, top_p=0.95, repetition_penalty=1.0, | |
): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
stop_sequences=["<|eot_id|>"] #Llama 3 requires this stop token | |
) | |
formatted_prompt = format_prompt(prompt, history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) #change last to True for debugging conversation history | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
return output | |
# Initialize sliders | |
additional_inputs=[ | |
gr.Slider( | |
label="Temperature", | |
value=0.1, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=1024, | |
minimum=0, | |
maximum=4096, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
#Gradio UI | |
with gr.Blocks(css=css) as demo: | |
gr.ChatInterface( | |
fn=generate, | |
description=DESCRIPTION, | |
additional_inputs=additional_inputs | |
) | |
gr.Markdown(LICENSE) | |
demo.queue(concurrency_count=75, max_size=100).launch(debug=True) |