File size: 10,716 Bytes
0f9d939
 
 
 
 
 
 
 
 
c06ddc9
0f9d939
c06ddc9
0f9d939
 
 
 
 
 
 
 
1a46bed
0f9d939
 
c06ddc9
0f9d939
 
 
 
 
 
 
 
 
 
 
 
 
 
eb14238
0f9d939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a29ce7
 
0f9d939
8a29ce7
0f9d939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24ab922
0f9d939
 
 
 
 
 
 
eb14238
 
24ab922
eb14238
 
dcad8c0
 
90455f2
dcad8c0
 
0f9d939
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import torch
import numpy as np
import gradio as gr
from scipy.ndimage import binary_fill_holes
from ultralytics import YOLOE
from ultralytics.utils.torch_utils import smart_inference_mode
from ultralytics.models.yolo.yoloe.predict_vp import YOLOEVPSegPredictor
from gradio_image_prompter import ImagePrompter
from huggingface_hub import hf_hub_download
import spaces

@spaces.GPU
def init_model(model_id, is_pf=False):
    if not is_pf:
        path = hf_hub_download(repo_id="jameslahm/yoloe", filename=f"{model_id}-seg.pt")
        model = YOLOE(path)
    else:
        path = hf_hub_download(repo_id="jameslahm/yoloe", filename=f"{model_id}-seg-pf.pt")
        model = YOLOE(path)
    model.eval()
    model.to("cuda")
    return model

@spaces.GPU
@smart_inference_mode()
def yoloe_inference(image, prompts, target_image, model_id, image_size, conf_thresh, iou_thresh, prompt_type):
    model = init_model(model_id)
    kwargs = {}
    if prompt_type == "Text":
        texts = prompts["texts"]
        model.set_classes(texts, model.get_text_pe(texts))
    elif prompt_type == "Visual":
        kwargs = dict(
            prompts=prompts,
            predictor=YOLOEVPSegPredictor
        )
        if target_image:
            model.predict(source=image, imgsz=image_size, conf=conf_thresh, iou=iou_thresh, return_vpe=True, **kwargs)
            model.set_classes(["object0"], model.predictor.vpe)
            model.predictor = None  # unset VPPredictor
            image = target_image
            kwargs = {}
    elif prompt_type == "Prompt-free":
        vocab = model.get_vocab(prompts["texts"])
        model = init_model(model_id, is_pf=True)
        model.set_vocab(vocab, names=prompts["texts"])
        model.model.model[-1].is_fused = True
        model.model.model[-1].conf = 0.001
        model.model.model[-1].max_det = 1000

    results = model.predict(source=image, imgsz=image_size, conf=conf_thresh, iou=iou_thresh, **kwargs)
    annotated_image = results[0].plot()
    return annotated_image[:, :, ::-1]


def app():
    with gr.Blocks():
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    raw_image = gr.Image(type="pil", label="Image", visible=True, interactive=True)
                    box_image = ImagePrompter(type="pil", label="DrawBox", visible=False, interactive=True)
                    mask_image = gr.ImageEditor(type="pil", label="DrawMask", visible=False, interactive=True, layers=False, canvas_size=(640, 640))
                    target_image = gr.Image(type="pil", label="Target Image", visible=False, interactive=True)
                
                yoloe_infer = gr.Button(value="Detect & Segment Objects")
                prompt_type = gr.Textbox(value="Text", visible=False)

                with gr.Tab("Text") as text_tab:
                    texts = gr.Textbox(label="Input Texts", value='person,bus', placeholder='person,bus', visible=True, interactive=True)
                
                with gr.Tab("Visual") as visual_tab:
                    with gr.Row():
                        visual_prompt_type = gr.Dropdown(choices=["bboxes", "masks"], value="bboxes", label="Visual Type", interactive=True)
                        visual_usage_type = gr.Radio(choices=["Intra-Image", "Inter-Image"], value="Intra-Image", label="Intra/Inter Image", interactive=True)
                
                with gr.Tab("Prompt-Free") as prompt_free_tab:
                    gr.HTML(
                        """
                        <p style='text-align: center'>
                        Prompt-Free Mode is On
                        </p>
                    """, show_label=False)

                model_id = gr.Dropdown(
                    label="Model",
                    choices=[
                        "yoloe-v8s",
                        "yoloe-v8m",
                        "yoloe-v8l",
                        "yoloe-11s",
                        "yoloe-11m",
                        "yoloe-11l",
                    ],
                    value="yoloe-v8l",
                )
                image_size = gr.Slider(
                    label="Image Size",
                    minimum=320,
                    maximum=1280,
                    step=32,
                    value=640,
                )
                conf_thresh = gr.Slider(
                    label="Confidence Threshold",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.05,
                    value=0.25,
                )
                iou_thresh = gr.Slider(
                    label="IoU Threshold",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.05,
                    value=0.70,
                )

            with gr.Column():
                output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
        
        def update_text_image_visibility():
            return gr.update(value="Text"), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)

        def update_visual_image_visiblity(visual_prompt_type, visual_usage_type):
            use_target = gr.update(visible=True) if visual_usage_type == "Inter-Image" else gr.update(visible=False)
            if visual_prompt_type == "bboxes":
                return gr.update(value="Visual"), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), use_target
            elif visual_prompt_type == "masks":
                return gr.update(value="Visual"), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), use_target

        def update_pf_image_visibility():
            return gr.update(value="Prompt-free"), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)

        text_tab.select(
            fn=update_text_image_visibility,
            inputs=None,
            outputs=[prompt_type, raw_image, box_image, mask_image, target_image]
        )
        
        visual_tab.select(
            fn=update_visual_image_visiblity,
            inputs=[visual_prompt_type, visual_usage_type],
            outputs=[prompt_type, raw_image, box_image, mask_image, target_image]
        )
        
        prompt_free_tab.select(
            fn=update_pf_image_visibility,
            inputs=None,
            outputs=[prompt_type, raw_image, box_image, mask_image, target_image]
        )

        def update_visual_prompt_type(visual_prompt_type):
            if visual_prompt_type == "bboxes":
                return gr.update(visible=True), gr.update(visible=False)
            if visual_prompt_type == "masks":
                return gr.update(visible=False), gr.update(visible=True)
            return gr.update(visible=False), gr.update(visible=False)

        def update_visual_usage_type(visual_usage_type):
            if visual_usage_type == "Intra-Image":
                return gr.update(visible=False, value=None)
            if visual_usage_type == "Inter-Image":
                return gr.update(visible=True, value=None)
            return gr.update(visible=False, value=None)

        visual_prompt_type.change(
            fn=update_visual_prompt_type,
            inputs=[visual_prompt_type],
            outputs=[box_image, mask_image]
        )

        visual_usage_type.change(
            fn=update_visual_usage_type,
            inputs=[visual_usage_type],
            outputs=[target_image]
        )

        def run_inference(raw_image, box_image, mask_image, target_image, texts, model_id, image_size, conf_thresh, iou_thresh, prompt_type, visual_prompt_type):
            # add text/built-in prompts
            if prompt_type == "Text" or prompt_type == "Prompt-free":
                image = raw_image
                if prompt_type == "Prompt-free":
                    with open('tools/ram_tag_list.txt', 'r') as f:
                        texts = [x.strip() for x in f.readlines()]
                else:
                    texts = [text.strip() for text in texts.split(',')]
                prompts = {
                    "texts": texts
                }
            # add visual prompt
            elif prompt_type == "Visual":
                if visual_prompt_type == "bboxes":
                    image, points = box_image["image"], box_image["points"]
                    points = np.array(points)
                    prompts = {
                        "bboxes": np.array([p[[0, 1, 3, 4]] for p in points if p[2] == 2]),
                    }
                elif visual_prompt_type == "masks":
                    image, masks = mask_image["background"], mask_image["layers"][0]
                    # image = image.convert("RGB")
                    masks = np.array(masks.convert("L"))
                    masks = binary_fill_holes(masks).astype(np.uint8)
                    masks[masks > 0] = 1
                    prompts = {
                        "masks": masks[None]
                    }
            return yoloe_inference(image, prompts, target_image, model_id, image_size, conf_thresh, iou_thresh, prompt_type)

        yoloe_infer.click(
            fn=run_inference,
            inputs=[raw_image, box_image, mask_image, target_image, texts, model_id, image_size, conf_thresh, iou_thresh, prompt_type, visual_prompt_type],
            outputs=[output_image],
        )


gradio_app = gr.Blocks()
with gradio_app:
    gr.HTML(
        """
    <h1 style='text-align: center'>
    <img src="/file=figures/logo.png" width="2.5%" style="display:inline;padding-bottom:4px">
    YOLOE: Real-Time Seeing Anything
    </h1>
    """)
    gr.HTML(
        """
        <h3 style='text-align: center'>
        <a href='https://arxiv.org/abs/2503.07465' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yoloe' target='_blank'>github</a>
        </h3>
        """)
    gr.Markdown(
        """
        We introduce **YOLOE(ye)**, a highly **efficient**, **unified**, and **open** object detection and segmentation model, like human eye, under different prompt mechanisms, like *texts*, *visual inputs*, and *prompt-free paradigm*.
        """
    )
    gr.Markdown(
        """
        If desired objects are not identified, pleaset set a **smaller** confidence threshold, e.g., for visual prompts with handcrafted shape or cross-image prompts.
        """
    )
    gr.Markdown(
        """
        Drawing **multiple** boxes or handcrafted shapes as visual prompt in an image is also supported.
        """
    )
    with gr.Row():
        with gr.Column():
            app()

if __name__ == '__main__':
    gradio_app.launch(allowed_paths=["figures"])