Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,806 Bytes
0f9d939 158f64b 0f9d939 c06ddc9 0f9d939 c06ddc9 0f9d939 0580ff2 0f9d939 1a46bed 0f9d939 c06ddc9 0f9d939 eb14238 0f9d939 158f64b 0f9d939 0580ff2 0f9d939 0580ff2 0f9d939 0580ff2 0f9d939 0580ff2 0f9d939 0580ff2 0f9d939 0580ff2 0f9d939 0580ff2 0f9d939 0580ff2 0f9d939 0580ff2 47a2710 0f9d939 47a2710 0f9d939 8a29ce7 0f9d939 8a29ce7 0580ff2 0f9d939 47a2710 0f9d939 0580ff2 0f9d939 0580ff2 0f9d939 24ab922 0f9d939 eb14238 24ab922 eb14238 dcad8c0 0580ff2 dcad8c0 0f9d939 0580ff2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import numpy as np
import gradio as gr
import supervision as sv
from scipy.ndimage import binary_fill_holes
from ultralytics import YOLOE
from ultralytics.utils.torch_utils import smart_inference_mode
from ultralytics.models.yolo.yoloe.predict_vp import YOLOEVPSegPredictor
from gradio_image_prompter import ImagePrompter
from huggingface_hub import hf_hub_download
import spaces
@spaces.GPU
def init_model(model_id, is_pf=False):
filename = f"{model_id}-seg.pt" if not is_pf else f"{model_id}-seg-pf.pt"
path = hf_hub_download(repo_id="jameslahm/yoloe", filename=filename)
model = YOLOE(path)
model.eval()
model.to("cuda")
return model
@spaces.GPU
@smart_inference_mode()
def yoloe_inference(image, prompts, target_image, model_id, image_size, conf_thresh, iou_thresh, prompt_type):
model = init_model(model_id)
kwargs = {}
if prompt_type == "Text":
texts = prompts["texts"]
model.set_classes(texts, model.get_text_pe(texts))
elif prompt_type == "Visual":
kwargs = dict(
prompts=prompts,
predictor=YOLOEVPSegPredictor
)
if target_image:
model.predict(source=image, imgsz=image_size, conf=conf_thresh, iou=iou_thresh, return_vpe=True, **kwargs)
model.set_classes(["object0"], model.predictor.vpe)
model.predictor = None # unset VPPredictor
image = target_image
kwargs = {}
elif prompt_type == "Prompt-free":
vocab = model.get_vocab(prompts["texts"])
model = init_model(model_id, is_pf=True)
model.set_vocab(vocab, names=prompts["texts"])
model.model.model[-1].is_fused = True
model.model.model[-1].conf = 0.001
model.model.model[-1].max_det = 1000
results = model.predict(source=image, imgsz=image_size, conf=conf_thresh, iou=iou_thresh, **kwargs)
detections = sv.Detections.from_ultralytics(results[0])
resolution_wh = image.size
thickness = sv.calculate_optimal_line_thickness(resolution_wh=resolution_wh)
text_scale = sv.calculate_optimal_text_scale(resolution_wh=resolution_wh)
labels = [
f"{class_name} {confidence:.2f}"
for class_name, confidence
in zip(detections['class_name'], detections.confidence)
]
annotated_image = image.copy()
annotated_image = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX, opacity=0.4).annotate(
scene=annotated_image, detections=detections)
annotated_image = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX, thickness=thickness).annotate(
scene=annotated_image, detections=detections)
annotated_image = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX, text_scale=text_scale, smart_position=True).annotate(
scene=annotated_image, detections=detections, labels=labels)
return annotated_image
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
with gr.Row():
raw_image = gr.Image(type="pil", label="Image", visible=True, interactive=True)
box_image = ImagePrompter(type="pil", label="DrawBox", visible=False, interactive=True)
mask_image = gr.ImageEditor(type="pil", label="DrawMask", visible=False, interactive=True, layers=False, canvas_size=(640, 640))
target_image = gr.Image(type="pil", label="Target Image", visible=False, interactive=True)
yoloe_infer = gr.Button(value="Detect & Segment Objects")
prompt_type = gr.Textbox(value="Text", visible=False)
with gr.Tab("Text") as text_tab:
texts = gr.Textbox(label="Input Texts", value='person,bus', placeholder='person,bus', visible=True, interactive=True)
with gr.Tab("Visual") as visual_tab:
with gr.Row():
visual_prompt_type = gr.Dropdown(choices=["bboxes", "masks"], value="bboxes", label="Visual Type", interactive=True)
visual_usage_type = gr.Radio(choices=["Intra-Image", "Cross-Image"], value="Intra-Image", label="Intra/Cross Image", interactive=True)
with gr.Tab("Prompt-Free") as prompt_free_tab:
gr.HTML(
"""
<p style='text-align: center'>
<b>Prompt-Free Mode is On</b>
</p>
""", show_label=False)
model_id = gr.Dropdown(
label="Model",
choices=[
"yoloe-v8s",
"yoloe-v8m",
"yoloe-v8l",
"yoloe-11s",
"yoloe-11m",
"yoloe-11l",
],
value="yoloe-v8l",
)
image_size = gr.Slider(
label="Image Size",
minimum=320,
maximum=1280,
step=32,
value=640,
)
conf_thresh = gr.Slider(
label="Confidence Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.25,
)
iou_thresh = gr.Slider(
label="IoU Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.70,
)
with gr.Column():
output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
def update_text_image_visibility():
return gr.update(value="Text"), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def update_visual_image_visiblity(visual_prompt_type, visual_usage_type):
if visual_prompt_type == "bboxes":
return gr.update(value="Visual"), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=(visual_usage_type == "Cross-Image"))
elif visual_prompt_type == "masks":
return gr.update(value="Visual"), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=(visual_usage_type == "Cross-Image"))
def update_pf_image_visibility():
return gr.update(value="Prompt-free"), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
text_tab.select(
fn=update_text_image_visibility,
inputs=None,
outputs=[prompt_type, raw_image, box_image, mask_image, target_image]
)
visual_tab.select(
fn=update_visual_image_visiblity,
inputs=[visual_prompt_type, visual_usage_type],
outputs=[prompt_type, raw_image, box_image, mask_image, target_image]
)
prompt_free_tab.select(
fn=update_pf_image_visibility,
inputs=None,
outputs=[prompt_type, raw_image, box_image, mask_image, target_image]
)
def update_visual_prompt_type(visual_prompt_type):
if visual_prompt_type == "bboxes":
return gr.update(visible=True), gr.update(visible=False)
if visual_prompt_type == "masks":
return gr.update(visible=False), gr.update(visible=True)
return gr.update(visible=False), gr.update(visible=False)
def update_visual_usage_type(visual_usage_type):
if visual_usage_type == "Intra-Image":
return gr.update(visible=False)
if visual_usage_type == "Cross-Image":
return gr.update(visible=True)
return gr.update(visible=False)
visual_prompt_type.change(
fn=update_visual_prompt_type,
inputs=[visual_prompt_type],
outputs=[box_image, mask_image]
)
visual_usage_type.change(
fn=update_visual_usage_type,
inputs=[visual_usage_type],
outputs=[target_image]
)
def run_inference(raw_image, box_image, mask_image, target_image, texts, model_id, image_size, conf_thresh, iou_thresh, prompt_type, visual_prompt_type, visual_usage_type):
# add text/built-in prompts
if prompt_type == "Text" or prompt_type == "Prompt-free":
target_image = None
image = raw_image
if prompt_type == "Prompt-free":
with open('tools/ram_tag_list.txt', 'r') as f:
texts = [x.strip() for x in f.readlines()]
else:
texts = [text.strip() for text in texts.split(',')]
prompts = {
"texts": texts
}
# add visual prompt
elif prompt_type == "Visual":
if visual_usage_type != "Cross-Image":
target_image = None
if visual_prompt_type == "bboxes":
image, points = box_image["image"], box_image["points"]
points = np.array(points)
if len(points) == 0:
gr.Warning("No boxes are provided. No image output.", visible=True)
return gr.update(value=None)
bboxes = np.array([p[[0, 1, 3, 4]] for p in points if p[2] == 2])
prompts = {
"bboxes": bboxes,
"cls": np.array([0] * len(bboxes))
}
elif visual_prompt_type == "masks":
image, masks = mask_image["background"], mask_image["layers"][0]
# image = image.convert("RGB")
masks = np.array(masks.convert("L"))
masks = binary_fill_holes(masks).astype(np.uint8)
masks[masks > 0] = 1
if masks.sum() == 0:
gr.Warning("No masks are provided. No image output.", visible=True)
return gr.update(value=None)
prompts = {
"masks": masks[None],
"cls": np.array([0])
}
return yoloe_inference(image, prompts, target_image, model_id, image_size, conf_thresh, iou_thresh, prompt_type)
yoloe_infer.click(
fn=run_inference,
inputs=[raw_image, box_image, mask_image, target_image, texts, model_id, image_size, conf_thresh, iou_thresh, prompt_type, visual_prompt_type, visual_usage_type],
outputs=[output_image],
)
###################### Examples ##########################
text_examples = gr.Examples(
examples=[[
"ultralytics/assets/bus.jpg",
"person,bus",
"yoloe-v8l",
640,
0.25,
0.7]],
inputs=[raw_image, texts, model_id, image_size, conf_thresh, iou_thresh],
visible=True, cache_examples=False, label="Text Prompt Examples")
box_examples = gr.Examples(
examples=[[
{"image": "ultralytics/assets/bus_box.jpg", "points": [[235, 408, 2, 342, 863, 3]]},
"ultralytics/assets/zidane.jpg",
"yoloe-v8l",
640,
0.2,
0.7,
]],
inputs=[box_image, target_image, model_id, image_size, conf_thresh, iou_thresh],
visible=False, cache_examples=False, label="Box Visual Prompt Examples")
mask_examples = gr.Examples(
examples=[[
{"background": "ultralytics/assets/bus.jpg", "layers": ["ultralytics/assets/bus_mask.png"], "composite": "ultralytics/assets/bus_composite.jpg"},
"ultralytics/assets/zidane.jpg",
"yoloe-v8l",
640,
0.15,
0.7,
]],
inputs=[mask_image, target_image, model_id, image_size, conf_thresh, iou_thresh],
visible=False, cache_examples=False, label="Mask Visual Prompt Examples")
pf_examples = gr.Examples(
examples=[[
"ultralytics/assets/bus.jpg",
"yoloe-v8l",
640,
0.25,
0.7,
]],
inputs=[raw_image, model_id, image_size, conf_thresh, iou_thresh],
visible=False, cache_examples=False, label="Prompt-free Examples")
# Components update
def load_box_example(visual_usage_type):
return (gr.update(visible=True, value={"image": "ultralytics/assets/bus_box.jpg", "points": [[235, 408, 2, 342, 863, 3]]}),
gr.update(visible=(visual_usage_type=="Cross-Image")))
def load_mask_example(visual_usage_type):
return gr.update(visible=True), gr.update(visible=(visual_usage_type=="Cross-Image"))
box_examples.load_input_event.then(
fn=load_box_example,
inputs=visual_usage_type,
outputs=[box_image, target_image]
)
mask_examples.load_input_event.then(
fn=load_mask_example,
inputs=visual_usage_type,
outputs=[mask_image, target_image]
)
# Examples update
def update_text_examples():
return gr.Dataset(visible=True), gr.Dataset(visible=False), gr.Dataset(visible=False), gr.Dataset(visible=False)
def update_pf_examples():
return gr.Dataset(visible=False), gr.Dataset(visible=False), gr.Dataset(visible=False), gr.Dataset(visible=True)
def update_visual_examples(visual_prompt_type):
if visual_prompt_type == "bboxes":
return gr.Dataset(visible=False), gr.Dataset(visible=True), gr.Dataset(visible=False), gr.Dataset(visible=False),
elif visual_prompt_type == "masks":
return gr.Dataset(visible=False), gr.Dataset(visible=False), gr.Dataset(visible=True), gr.Dataset(visible=False),
text_tab.select(
fn=update_text_examples,
inputs=None,
outputs=[text_examples.dataset, box_examples.dataset, mask_examples.dataset, pf_examples.dataset]
)
visual_tab.select(
fn=update_visual_examples,
inputs=[visual_prompt_type],
outputs=[text_examples.dataset, box_examples.dataset, mask_examples.dataset, pf_examples.dataset]
)
prompt_free_tab.select(
fn=update_pf_examples,
inputs=None,
outputs=[text_examples.dataset, box_examples.dataset, mask_examples.dataset, pf_examples.dataset]
)
visual_prompt_type.change(
fn=update_visual_examples,
inputs=[visual_prompt_type],
outputs=[text_examples.dataset, box_examples.dataset, mask_examples.dataset, pf_examples.dataset]
)
visual_usage_type.change(
fn=update_visual_examples,
inputs=[visual_prompt_type],
outputs=[text_examples.dataset, box_examples.dataset, mask_examples.dataset, pf_examples.dataset]
)
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>
<img src="/file=figures/logo.png" width="2.5%" style="display:inline;padding-bottom:4px">
YOLOE: Real-Time Seeing Anything
</h1>
""")
gr.HTML(
"""
<h3 style='text-align: center'>
<a href='https://arxiv.org/abs/2503.07465' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yoloe' target='_blank'>github</a>
</h3>
""")
gr.Markdown(
"""
We introduce **YOLOE(ye)**, a highly **efficient**, **unified**, and **open** object detection and segmentation model, like human eye, under different prompt mechanisms, like *texts*, *visual inputs*, and *prompt-free paradigm*.
"""
)
gr.Markdown(
"""
If desired objects are not identified, pleaset set a **smaller** confidence threshold, e.g., for visual prompts with handcrafted shape or cross-image prompts.
"""
)
gr.Markdown(
"""
Drawing **multiple** boxes or handcrafted shapes as visual prompt in an image is also supported, which leads to more accurate prompt.
"""
)
with gr.Row():
with gr.Column():
app()
if __name__ == '__main__':
gradio_app.launch(allowed_paths=["figures"])
|