EasyControl / src /layers_cache.py
jamesliu1217's picture
Update src/layers_cache.py
7761629 verified
import inspect
import math
from typing import Callable, List, Optional, Tuple, Union
from einops import rearrange
import torch
from torch import nn
import torch.nn.functional as F
from torch import Tensor
from diffusers.models.attention_processor import Attention
class LoRALinearLayer(nn.Module):
def __init__(
self,
in_features: int,
out_features: int,
rank: int = 4,
network_alpha: Optional[float] = None,
device: Optional[Union[torch.device, str]] = None,
dtype: Optional[torch.dtype] = None,
cond_width=512,
cond_height=512,
number=0,
n_loras=1
):
super().__init__()
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
self.network_alpha = network_alpha
self.rank = rank
self.out_features = out_features
self.in_features = in_features
nn.init.normal_(self.down.weight, std=1 / rank)
nn.init.zeros_(self.up.weight)
self.cond_height = cond_height
self.cond_width = cond_width
self.number = number
self.n_loras = n_loras
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_dtype = hidden_states.dtype
dtype = self.down.weight.dtype
####
batch_size = hidden_states.shape[0]
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
block_size = hidden_states.shape[1] - cond_size * self.n_loras
shape = (batch_size, hidden_states.shape[1], 3072)
mask = torch.ones(shape, device=hidden_states.device, dtype=dtype)
mask[:, :block_size+self.number*cond_size, :] = 0
mask[:, block_size+(self.number+1)*cond_size:, :] = 0
hidden_states = mask * hidden_states
####
down_hidden_states = self.down(hidden_states.to(dtype))
up_hidden_states = self.up(down_hidden_states)
if self.network_alpha is not None:
up_hidden_states *= self.network_alpha / self.rank
return up_hidden_states.to(orig_dtype)
class MultiSingleStreamBlockLoraProcessor(nn.Module):
def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
super().__init__()
# Initialize a list to store the LoRA layers
self.n_loras = n_loras
self.cond_width = cond_width
self.cond_height = cond_height
self.q_loras = nn.ModuleList([
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
for i in range(n_loras)
])
self.k_loras = nn.ModuleList([
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
for i in range(n_loras)
])
self.v_loras = nn.ModuleList([
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
for i in range(n_loras)
])
self.lora_weights = lora_weights
self.bank_attn = None
self.bank_kv = []
def __call__(self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
use_cond = False
) -> torch.FloatTensor:
batch_size, seq_len, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
scaled_seq_len = hidden_states.shape[1]
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
block_size = scaled_seq_len - cond_size * self.n_loras
scaled_cond_size = cond_size
scaled_block_size = block_size
if len(self.bank_kv)== 0:
cache = True
else:
cache = False
if cache:
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
for i in range(self.n_loras):
query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
self.bank_kv.append(key[:, :, scaled_block_size:, :])
self.bank_kv.append(value[:, :, scaled_block_size:, :])
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
num_cond_blocks = self.n_loras
mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
mask[ :scaled_block_size, :] = 0 # First block_size row
for i in range(num_cond_blocks):
start = i * scaled_cond_size + scaled_block_size
end = (i + 1) * scaled_cond_size + scaled_block_size
mask[start:end, start:end] = 0 # Diagonal blocks
mask = mask * -1e10
mask = mask.to(query.dtype)
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
else:
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = query.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = torch.concat([key[:, :, :scaled_block_size, :], self.bank_kv[0]], dim=-2)
value = torch.concat([value[:, :, :scaled_block_size, :], self.bank_kv[1]], dim=-2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
query = query[:, :, :scaled_block_size, :]
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
cond_hidden_states = hidden_states[:, block_size:,:]
hidden_states = hidden_states[:, : block_size,:]
return hidden_states if not use_cond else (hidden_states, cond_hidden_states)
class MultiDoubleStreamBlockLoraProcessor(nn.Module):
def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
super().__init__()
# Initialize a list to store the LoRA layers
self.n_loras = n_loras
self.cond_width = cond_width
self.cond_height = cond_height
self.q_loras = nn.ModuleList([
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
for i in range(n_loras)
])
self.k_loras = nn.ModuleList([
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
for i in range(n_loras)
])
self.v_loras = nn.ModuleList([
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
for i in range(n_loras)
])
self.proj_loras = nn.ModuleList([
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
for i in range(n_loras)
])
self.lora_weights = lora_weights
self.bank_attn = None
self.bank_kv = []
def __call__(self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
use_cond=False,
) -> torch.FloatTensor:
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
block_size = hidden_states.shape[1] - cond_size * self.n_loras
scaled_seq_len = encoder_hidden_states.shape[1] + hidden_states.shape[1]
scaled_cond_size = cond_size
scaled_block_size = scaled_seq_len - scaled_cond_size * self.n_loras
# `context` projections.
inner_dim = 3072
head_dim = inner_dim // attn.heads
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
if len(self.bank_kv)== 0:
cache = True
else:
cache = False
if cache:
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
for i in range(self.n_loras):
query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
self.bank_kv.append(key[:, :, block_size:, :])
self.bank_kv.append(value[:, :, block_size:, :])
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
num_cond_blocks = self.n_loras
mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
mask[ :scaled_block_size, :] = 0 # First block_size row
for i in range(num_cond_blocks):
start = i * scaled_cond_size + scaled_block_size
end = (i + 1) * scaled_cond_size + scaled_block_size
mask[start:end, start:end] = 0 # Diagonal blocks
mask = mask * -1e10
mask = mask.to(query.dtype)
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
else:
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = query.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = torch.concat([key[:, :, :block_size, :], self.bank_kv[0]], dim=-2)
value = torch.concat([value[:, :, :block_size, :], self.bank_kv[1]], dim=-2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
query = query[:, :, :scaled_block_size, :]
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
# Linear projection (with LoRA weight applied to each proj layer)
hidden_states = attn.to_out[0](hidden_states)
for i in range(self.n_loras):
hidden_states = hidden_states + self.lora_weights[i] * self.proj_loras[i](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
cond_hidden_states = hidden_states[:, block_size:,:]
hidden_states = hidden_states[:, :block_size,:]
return (hidden_states, encoder_hidden_states, cond_hidden_states) if use_cond else (encoder_hidden_states, hidden_states)