jamesliu1217 commited on
Commit
8f6d6cb
·
verified ·
1 Parent(s): 5544c41

Upload 7 files

Browse files
app.py CHANGED
@@ -1,7 +1,186 @@
 
 
 
 
 
 
1
  import gradio as gr
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import time
4
+ import torch
5
+ from PIL import Image
6
+ from tqdm import tqdm
7
  import gradio as gr
8
 
9
+ from safetensors.torch import save_file
10
+ from src.pipeline import FluxPipeline
11
+ from src.transformer_flux import FluxTransformer2DModel
12
+ from src.lora_helper import set_single_lora, set_multi_lora, unset_lora
13
 
14
+ class ImageProcessor:
15
+ def __init__(self, path):
16
+ device = "cuda"
17
+ self.pipe = FluxPipeline.from_pretrained(path, torch_dtype=torch.bfloat16, device=device)
18
+ transformer = FluxTransformer2DModel.from_pretrained(path, subfolder="transformer", torch_dtype=torch.bfloat16, device=device)
19
+ self.pipe.transformer = transformer
20
+ self.pipe.to(device)
21
+
22
+ def clear_cache(self, transformer):
23
+ for name, attn_processor in transformer.attn_processors.items():
24
+ attn_processor.bank_kv.clear()
25
+
26
+ def process_image(self, prompt='', subject_imgs=[], spatial_imgs=[], height=768, width=768, output_path=None, seed=42):
27
+ image = self.pipe(
28
+ prompt,
29
+ height=int(height),
30
+ width=int(width),
31
+ guidance_scale=3.5,
32
+ num_inference_steps=25,
33
+ max_sequence_length=512,
34
+ generator=torch.Generator("cpu").manual_seed(seed),
35
+ subject_images=subject_imgs,
36
+ spatial_images=spatial_imgs,
37
+ cond_size=512,
38
+ ).images[0]
39
+ self.clear_cache(self.pipe.transformer)
40
+ if output_path:
41
+ image.save(output_path)
42
+ return image
43
+
44
+ # Initialize the image processor
45
+ base_path = "/opt/liblibai-models/model-weights/black-forest-labs/FLUX.1-dev"
46
+ lora_base_path = "/opt/liblibai-models/user-workspace/rey/projects/opensource/github/EasyControl/models"
47
+ style_lora_base_path = "/opt/liblibai-models/user-workspace/zhangyuxuan/models/Shakker-Labs"
48
+ processor = ImageProcessor(base_path)
49
+
50
+ # Define the Gradio interface
51
+ def single_condition_generate_image(prompt, subject_img, spatial_img, height, width, seed, control_type, style_lora=None):
52
+ # Set the control type
53
+ if control_type == "subject":
54
+ lora_path = os.path.join(lora_base_path, "subject.safetensors")
55
+ elif control_type == "depth":
56
+ lora_path = os.path.join(lora_base_path, "depth.safetensors")
57
+ elif control_type == "seg":
58
+ lora_path = os.path.join(lora_base_path, "seg.safetensors")
59
+ elif control_type == "pose":
60
+ lora_path = os.path.join(lora_base_path, "pose.safetensors")
61
+ elif control_type == "inpainting":
62
+ lora_path = os.path.join(lora_base_path, "inpainting.safetensors")
63
+ elif control_type == "hedsketch":
64
+ lora_path = os.path.join(lora_base_path, "hedsketch.safetensors")
65
+ elif control_type == "canny":
66
+ lora_path = os.path.join(lora_base_path, "canny.safetensors")
67
+ set_single_lora(processor.pipe.transformer, lora_path, lora_weights=[1], cond_size=512)
68
+
69
+ # Set the style LoRA
70
+ if style_lora=="None":
71
+ pass
72
+ else:
73
+ if style_lora == "Simple_Sketch":
74
+ processor.pipe.unload_lora_weights()
75
+ style_lora_path = os.path.join(style_lora_base_path, "FLUX.1-dev-LoRA-Children-Simple-Sketch/pytorch_lora_weights.safetensors")
76
+ processor.pipe.load_lora_weights(self.lora_path, weight_name="pytorch_lora_weights.safetensors")
77
+ if style_lora == "Text_Poster":
78
+ processor.pipe.unload_lora_weights()
79
+ style_lora_path = os.path.join(style_lora_base_path, "FLUX.1-dev-LoRA-Text-Poster/pytorch_lora_weights.safetensors")
80
+ processor.pipe.load_lora_weights(self.lora_path, weight_name="pytorch_lora_weights.safetensors")
81
+ if style_lora == "Vector_Style":
82
+ processor.pipe.unload_lora_weights()
83
+ style_lora_path = os.path.join(style_lora_base_path, "FLUX.1-dev-LoRA-Vector-Journey/pytorch_lora_weights.safetensors")
84
+ processor.pipe.load_lora_weights(style_lora_path, weight_name="pytorch_lora_weights.safetensors")
85
+
86
+ # Process the image
87
+ subject_imgs = [subject_img] if subject_img else []
88
+ spatial_imgs = [spatial_img] if spatial_img else []
89
+ image = processor.process_image(prompt=prompt, subject_imgs=subject_imgs, spatial_imgs=spatial_imgs, height=height, width=width, seed=seed)
90
+ return image
91
+
92
+ # Define the Gradio interface
93
+ def multi_condition_generate_image(prompt, subject_img, spatial_img, height, width, seed):
94
+ subject_path = os.path.join(lora_base_path, "subject.safetensors")
95
+ inpainting_path = os.path.join(lora_base_path, "inpainting.safetensors")
96
+ set_multi_lora(processor.pipe.transformer, [subject_path, inpainting_path], lora_weights=[[1],[1]],cond_size=512)
97
+
98
+ # Process the image
99
+ subject_imgs = [subject_img] if subject_img else []
100
+ spatial_imgs = [spatial_img] if spatial_img else []
101
+ image = processor.process_image(prompt=prompt, subject_imgs=subject_imgs, spatial_imgs=spatial_imgs, height=height, width=width, seed=seed)
102
+ return image
103
+
104
+ # Define the Gradio interface components
105
+ control_types = ["subject", "depth", "pose", "inpainting", "hedsketch", "seg", "canny"]
106
+ style_loras = ["Simple_Sketch", "Text_Poster", "Vector_Style", "None"]
107
+
108
+ # Example data
109
+ single_examples = [
110
+ ["A SKS in the library", Image.open("/opt/liblibai-models/user-workspace/zhangyuxuan/project/easycontrol/inference0310/test_imgs/subject3.jpg"), None, 1024, 1024, 5, "subject", None],
111
+ ["In a picturesque village, a narrow cobblestone street with rustic stone buildings, colorful blinds, and lush green spaces, a cartoon man drawn with simple lines and solid colors stands in the foreground, wearing a red shirt, beige work pants, and brown shoes, carrying a strap on his shoulder. The scene features warm and enticing colors, a pleasant fusion of nature and architecture, and the camera's perspective on the street clearly shows the charming and quaint environment., Integrating elements of reality and cartoon.", None, Image.open("/opt/liblibai-models/user-workspace/zhangyuxuan/project/easycontrol/inference0310/test_imgs/openpose.png"), 1024, 1024, 1, "pose", "Vector_Style"],
112
+ ]
113
+ multi_examples = [
114
+ ["A SKS on the car", Image.open("/opt/liblibai-models/user-workspace/zhangyuxuan/project/easycontrol/code0221/test_imgs/subject/s17.png"), Image.open("/opt/liblibai-models/user-workspace/zhangyuxuan/project/easycontrol/code0221/test_imgs/inpainting.png"), 1024, 1024, 7],
115
+ ]
116
+
117
+
118
+ # Create the Gradio Blocks interface
119
+ with gr.Blocks() as demo:
120
+ gr.Markdown("# Image Generation with EasyControl")
121
+ gr.Markdown("Generate images using EasyControl with different control types and style LoRAs.")
122
+
123
+ with gr.Tab("Single Condition Generation"):
124
+ with gr.Row():
125
+ with gr.Column():
126
+ prompt = gr.Textbox(label="Prompt")
127
+ subject_img = gr.Image(label="Subject Image", type="pil") # 上传图像文件
128
+ spatial_img = gr.Image(label="Spatial Image", type="pil") # 上传图像文件
129
+ height = gr.Slider(minimum=256, maximum=1536, step=64, label="Height", value=768)
130
+ width = gr.Slider(minimum=256, maximum=1536, step=64, label="Width", value=768)
131
+ seed = gr.Number(label="Seed", value=42)
132
+ control_type = gr.Dropdown(choices=control_types, label="Control Type")
133
+ style_lora = gr.Dropdown(choices=style_loras, label="Style LoRA")
134
+ single_generate_btn = gr.Button("Generate Image")
135
+ with gr.Column():
136
+ single_output_image = gr.Image(label="Generated Image")
137
+
138
+ # Add examples for Single Condition Generation
139
+ gr.Examples(
140
+ examples=single_examples,
141
+ inputs=[prompt, subject_img, spatial_img, height, width, seed, control_type, style_lora],
142
+ outputs=single_output_image,
143
+ fn=single_condition_generate_image,
144
+ cache_examples=True, # 缓存示例结果以加快加载速度
145
+ label="Single Condition Examples"
146
+ )
147
+
148
+
149
+ with gr.Tab("Multi-Condition Generation"):
150
+ with gr.Row():
151
+ with gr.Column():
152
+ multi_prompt = gr.Textbox(label="Prompt")
153
+ multi_subject_img = gr.Image(label="Subject Image", type="pil") # 上传图像文件
154
+ multi_spatial_img = gr.Image(label="Spatial Image", type="pil") # 上传图像文件
155
+ multi_height = gr.Slider(minimum=256, maximum=1536, step=64, label="Height", value=768)
156
+ multi_width = gr.Slider(minimum=256, maximum=1536, step=64, label="Width", value=768)
157
+ multi_seed = gr.Number(label="Seed", value=42)
158
+ multi_generate_btn = gr.Button("Generate Image")
159
+ with gr.Column():
160
+ multi_output_image = gr.Image(label="Generated Image")
161
+
162
+ # Add examples for Multi-Condition Generation
163
+ gr.Examples(
164
+ examples=multi_examples,
165
+ inputs=[multi_prompt, multi_subject_img, multi_spatial_img, multi_height, multi_width, multi_seed],
166
+ outputs=multi_output_image,
167
+ fn=multi_condition_generate_image,
168
+ cache_examples=True, # 缓存示例结果以加快加载速度
169
+ label="Multi-Condition Examples"
170
+ )
171
+
172
+
173
+ # Link the buttons to the functions
174
+ single_generate_btn.click(
175
+ single_condition_generate_image,
176
+ inputs=[prompt, subject_img, spatial_img, height, width, seed, control_type, style_lora],
177
+ outputs=single_output_image
178
+ )
179
+ multi_generate_btn.click(
180
+ multi_condition_generate_image,
181
+ inputs=[multi_prompt, multi_subject_img, multi_spatial_img, multi_height, multi_width, multi_seed],
182
+ outputs=multi_output_image
183
+ )
184
+
185
+ # Launch the Gradio app
186
+ demo.queue().launch(server_name='0.0.0.0',server_port=7861)
src/__init__.py ADDED
File without changes
src/layers_cache.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import inspect
2
+ import math
3
+ from typing import Callable, List, Optional, Tuple, Union
4
+ from einops import rearrange
5
+ import torch
6
+ from torch import nn
7
+ import torch.nn.functional as F
8
+ from torch import Tensor
9
+ from diffusers.models.attention_processor import Attention
10
+
11
+ class LoRALinearLayer(nn.Module):
12
+ def __init__(
13
+ self,
14
+ in_features: int,
15
+ out_features: int,
16
+ rank: int = 4,
17
+ network_alpha: Optional[float] = None,
18
+ device: Optional[Union[torch.device, str]] = None,
19
+ dtype: Optional[torch.dtype] = None,
20
+ cond_width=512,
21
+ cond_height=512,
22
+ number=0,
23
+ n_loras=1
24
+ ):
25
+ super().__init__()
26
+ self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
27
+ self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
28
+ # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
29
+ # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
30
+ self.network_alpha = network_alpha
31
+ self.rank = rank
32
+ self.out_features = out_features
33
+ self.in_features = in_features
34
+
35
+ nn.init.normal_(self.down.weight, std=1 / rank)
36
+ nn.init.zeros_(self.up.weight)
37
+
38
+ self.cond_height = cond_height
39
+ self.cond_width = cond_width
40
+ self.number = number
41
+ self.n_loras = n_loras
42
+
43
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
44
+ orig_dtype = hidden_states.dtype
45
+ dtype = self.down.weight.dtype
46
+
47
+ ####
48
+ batch_size = hidden_states.shape[0]
49
+ cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
50
+ block_size = hidden_states.shape[1] - cond_size * self.n_loras
51
+ shape = (batch_size, hidden_states.shape[1], 3072)
52
+ mask = torch.ones(shape, device=hidden_states.device, dtype=dtype)
53
+ mask[:, :block_size+self.number*cond_size, :] = 0
54
+ mask[:, block_size+(self.number+1)*cond_size:, :] = 0
55
+ hidden_states = mask * hidden_states
56
+ ####
57
+
58
+ down_hidden_states = self.down(hidden_states.to(dtype))
59
+ up_hidden_states = self.up(down_hidden_states)
60
+
61
+ if self.network_alpha is not None:
62
+ up_hidden_states *= self.network_alpha / self.rank
63
+
64
+ return up_hidden_states.to(orig_dtype)
65
+
66
+
67
+ class MultiSingleStreamBlockLoraProcessor(nn.Module):
68
+ def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
69
+ super().__init__()
70
+ # Initialize a list to store the LoRA layers
71
+ self.n_loras = n_loras
72
+ self.cond_width = cond_width
73
+ self.cond_height = cond_height
74
+
75
+ self.q_loras = nn.ModuleList([
76
+ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
77
+ for i in range(n_loras)
78
+ ])
79
+ self.k_loras = nn.ModuleList([
80
+ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
81
+ for i in range(n_loras)
82
+ ])
83
+ self.v_loras = nn.ModuleList([
84
+ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
85
+ for i in range(n_loras)
86
+ ])
87
+ self.lora_weights = lora_weights
88
+ self.bank_attn = None
89
+ self.bank_kv = []
90
+
91
+
92
+ def __call__(self,
93
+ attn: Attention,
94
+ hidden_states: torch.FloatTensor,
95
+ encoder_hidden_states: torch.FloatTensor = None,
96
+ attention_mask: Optional[torch.FloatTensor] = None,
97
+ image_rotary_emb: Optional[torch.Tensor] = None,
98
+ use_cond = False
99
+ ) -> torch.FloatTensor:
100
+
101
+ batch_size, seq_len, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
102
+ scaled_seq_len = hidden_states.shape[1]
103
+ cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
104
+ block_size = scaled_seq_len - cond_size * self.n_loras
105
+ scaled_cond_size = cond_size
106
+ scaled_block_size = block_size
107
+
108
+ if len(self.bank_kv)== 0:
109
+ cache = True
110
+ else:
111
+ cache = False
112
+
113
+ if cache:
114
+ query = attn.to_q(hidden_states)
115
+ key = attn.to_k(hidden_states)
116
+ value = attn.to_v(hidden_states)
117
+ for i in range(self.n_loras):
118
+ query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
119
+ key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
120
+ value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
121
+
122
+ inner_dim = key.shape[-1]
123
+ head_dim = inner_dim // attn.heads
124
+
125
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
126
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
127
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
128
+
129
+ self.bank_kv.append(key[:, :, scaled_block_size:, :])
130
+ self.bank_kv.append(value[:, :, scaled_block_size:, :])
131
+
132
+ if attn.norm_q is not None:
133
+ query = attn.norm_q(query)
134
+ if attn.norm_k is not None:
135
+ key = attn.norm_k(key)
136
+
137
+ if image_rotary_emb is not None:
138
+ from diffusers.models.embeddings import apply_rotary_emb
139
+ query = apply_rotary_emb(query, image_rotary_emb)
140
+ key = apply_rotary_emb(key, image_rotary_emb)
141
+
142
+ num_cond_blocks = self.n_loras
143
+ mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
144
+ mask[ :scaled_block_size, :] = 0 # First block_size row
145
+ for i in range(num_cond_blocks):
146
+ start = i * scaled_cond_size + scaled_block_size
147
+ end = (i + 1) * scaled_cond_size + scaled_block_size
148
+ mask[start:end, start:end] = 0 # Diagonal blocks
149
+ mask = mask * -1e20
150
+ mask = mask.to(query.dtype)
151
+
152
+ hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
153
+ self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
154
+
155
+ else:
156
+ query = attn.to_q(hidden_states)
157
+ key = attn.to_k(hidden_states)
158
+ value = attn.to_v(hidden_states)
159
+
160
+ inner_dim = query.shape[-1]
161
+ head_dim = inner_dim // attn.heads
162
+
163
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
164
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
165
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
166
+
167
+ key = torch.concat([key[:, :, :scaled_block_size, :], self.bank_kv[0]], dim=-2)
168
+ value = torch.concat([value[:, :, :scaled_block_size, :], self.bank_kv[1]], dim=-2)
169
+
170
+ if attn.norm_q is not None:
171
+ query = attn.norm_q(query)
172
+ if attn.norm_k is not None:
173
+ key = attn.norm_k(key)
174
+
175
+ if image_rotary_emb is not None:
176
+ from diffusers.models.embeddings import apply_rotary_emb
177
+ query = apply_rotary_emb(query, image_rotary_emb)
178
+ key = apply_rotary_emb(key, image_rotary_emb)
179
+
180
+ query = query[:, :, :scaled_block_size, :]
181
+
182
+ hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
183
+ hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2)
184
+
185
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
186
+ hidden_states = hidden_states.to(query.dtype)
187
+
188
+ cond_hidden_states = hidden_states[:, block_size:,:]
189
+ hidden_states = hidden_states[:, : block_size,:]
190
+
191
+ return hidden_states if not use_cond else (hidden_states, cond_hidden_states)
192
+
193
+
194
+ class MultiDoubleStreamBlockLoraProcessor(nn.Module):
195
+ def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
196
+ super().__init__()
197
+
198
+ # Initialize a list to store the LoRA layers
199
+ self.n_loras = n_loras
200
+ self.cond_width = cond_width
201
+ self.cond_height = cond_height
202
+ self.q_loras = nn.ModuleList([
203
+ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
204
+ for i in range(n_loras)
205
+ ])
206
+ self.k_loras = nn.ModuleList([
207
+ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
208
+ for i in range(n_loras)
209
+ ])
210
+ self.v_loras = nn.ModuleList([
211
+ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
212
+ for i in range(n_loras)
213
+ ])
214
+ self.proj_loras = nn.ModuleList([
215
+ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
216
+ for i in range(n_loras)
217
+ ])
218
+ self.lora_weights = lora_weights
219
+ self.bank_attn = None
220
+ self.bank_kv = []
221
+
222
+
223
+ def __call__(self,
224
+ attn: Attention,
225
+ hidden_states: torch.FloatTensor,
226
+ encoder_hidden_states: torch.FloatTensor = None,
227
+ attention_mask: Optional[torch.FloatTensor] = None,
228
+ image_rotary_emb: Optional[torch.Tensor] = None,
229
+ use_cond=False,
230
+ ) -> torch.FloatTensor:
231
+
232
+ batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
233
+ cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
234
+ block_size = hidden_states.shape[1] - cond_size * self.n_loras
235
+ scaled_seq_len = encoder_hidden_states.shape[1] + hidden_states.shape[1]
236
+ scaled_cond_size = cond_size
237
+ scaled_block_size = scaled_seq_len - scaled_cond_size * self.n_loras
238
+
239
+ # `context` projections.
240
+ inner_dim = 3072
241
+ head_dim = inner_dim // attn.heads
242
+ encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
243
+ encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
244
+ encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
245
+
246
+ encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
247
+ batch_size, -1, attn.heads, head_dim
248
+ ).transpose(1, 2)
249
+ encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
250
+ batch_size, -1, attn.heads, head_dim
251
+ ).transpose(1, 2)
252
+ encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
253
+ batch_size, -1, attn.heads, head_dim
254
+ ).transpose(1, 2)
255
+
256
+ if attn.norm_added_q is not None:
257
+ encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
258
+ if attn.norm_added_k is not None:
259
+ encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
260
+
261
+ if len(self.bank_kv)== 0:
262
+ cache = True
263
+ else:
264
+ cache = False
265
+
266
+ if cache:
267
+
268
+ query = attn.to_q(hidden_states)
269
+ key = attn.to_k(hidden_states)
270
+ value = attn.to_v(hidden_states)
271
+ for i in range(self.n_loras):
272
+ query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
273
+ key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
274
+ value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
275
+
276
+ inner_dim = key.shape[-1]
277
+ head_dim = inner_dim // attn.heads
278
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
279
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
280
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
281
+
282
+
283
+ self.bank_kv.append(key[:, :, block_size:, :])
284
+ self.bank_kv.append(value[:, :, block_size:, :])
285
+
286
+ if attn.norm_q is not None:
287
+ query = attn.norm_q(query)
288
+ if attn.norm_k is not None:
289
+ key = attn.norm_k(key)
290
+
291
+ # attention
292
+ query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
293
+ key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
294
+ value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
295
+
296
+ if image_rotary_emb is not None:
297
+ from diffusers.models.embeddings import apply_rotary_emb
298
+ query = apply_rotary_emb(query, image_rotary_emb)
299
+ key = apply_rotary_emb(key, image_rotary_emb)
300
+
301
+ num_cond_blocks = self.n_loras
302
+ mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
303
+ mask[ :scaled_block_size, :] = 0 # First block_size row
304
+ for i in range(num_cond_blocks):
305
+ start = i * scaled_cond_size + scaled_block_size
306
+ end = (i + 1) * scaled_cond_size + scaled_block_size
307
+ mask[start:end, start:end] = 0 # Diagonal blocks
308
+ mask = mask * -1e20
309
+ mask = mask.to(query.dtype)
310
+
311
+ hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
312
+ self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
313
+
314
+ else:
315
+ query = attn.to_q(hidden_states)
316
+ key = attn.to_k(hidden_states)
317
+ value = attn.to_v(hidden_states)
318
+
319
+ inner_dim = query.shape[-1]
320
+ head_dim = inner_dim // attn.heads
321
+
322
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
323
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
324
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
325
+
326
+ key = torch.concat([key[:, :, :block_size, :], self.bank_kv[0]], dim=-2)
327
+ value = torch.concat([value[:, :, :block_size, :], self.bank_kv[1]], dim=-2)
328
+
329
+ if attn.norm_q is not None:
330
+ query = attn.norm_q(query)
331
+ if attn.norm_k is not None:
332
+ key = attn.norm_k(key)
333
+
334
+ # attention
335
+ query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
336
+ key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
337
+ value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
338
+
339
+ if image_rotary_emb is not None:
340
+ from diffusers.models.embeddings import apply_rotary_emb
341
+ query = apply_rotary_emb(query, image_rotary_emb)
342
+ key = apply_rotary_emb(key, image_rotary_emb)
343
+
344
+ query = query[:, :, :scaled_block_size, :]
345
+
346
+ hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
347
+ hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2)
348
+
349
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
350
+ hidden_states = hidden_states.to(query.dtype)
351
+
352
+ encoder_hidden_states, hidden_states = (
353
+ hidden_states[:, : encoder_hidden_states.shape[1]],
354
+ hidden_states[:, encoder_hidden_states.shape[1] :],
355
+ )
356
+
357
+ # Linear projection (with LoRA weight applied to each proj layer)
358
+ hidden_states = attn.to_out[0](hidden_states)
359
+ for i in range(self.n_loras):
360
+ hidden_states = hidden_states + self.lora_weights[i] * self.proj_loras[i](hidden_states)
361
+ # dropout
362
+ hidden_states = attn.to_out[1](hidden_states)
363
+ encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
364
+
365
+ cond_hidden_states = hidden_states[:, block_size:,:]
366
+ hidden_states = hidden_states[:, :block_size,:]
367
+
368
+ return (hidden_states, encoder_hidden_states, cond_hidden_states) if use_cond else (encoder_hidden_states, hidden_states)
src/lora_helper.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers.models.attention_processor import FluxAttnProcessor2_0
2
+ from safetensors import safe_open
3
+ import re
4
+ import torch
5
+ from .layers_cache import MultiDoubleStreamBlockLoraProcessor, MultiSingleStreamBlockLoraProcessor
6
+
7
+ device = "cuda"
8
+
9
+ def load_safetensors(path):
10
+ tensors = {}
11
+ with safe_open(path, framework="pt", device="cpu") as f:
12
+ for key in f.keys():
13
+ tensors[key] = f.get_tensor(key)
14
+ return tensors
15
+
16
+ def get_lora_rank(checkpoint):
17
+ for k in checkpoint.keys():
18
+ if k.endswith(".down.weight"):
19
+ return checkpoint[k].shape[0]
20
+
21
+ def load_checkpoint(local_path):
22
+ if local_path is not None:
23
+ if '.safetensors' in local_path:
24
+ print(f"Loading .safetensors checkpoint from {local_path}")
25
+ checkpoint = load_safetensors(local_path)
26
+ else:
27
+ print(f"Loading checkpoint from {local_path}")
28
+ checkpoint = torch.load(local_path, map_location='cpu')
29
+ return checkpoint
30
+
31
+ def update_model_with_lora(checkpoint, lora_weights, transformer, cond_size):
32
+ number = len(lora_weights)
33
+ ranks = [get_lora_rank(checkpoint) for _ in range(number)]
34
+ lora_attn_procs = {}
35
+ double_blocks_idx = list(range(19))
36
+ single_blocks_idx = list(range(38))
37
+ for name, attn_processor in transformer.attn_processors.items():
38
+ match = re.search(r'\.(\d+)\.', name)
39
+ if match:
40
+ layer_index = int(match.group(1))
41
+
42
+ if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
43
+
44
+ lora_state_dicts = {}
45
+ for key, value in checkpoint.items():
46
+ # Match based on the layer index in the key (assuming the key contains layer index)
47
+ if re.search(r'\.(\d+)\.', key):
48
+ checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
49
+ if checkpoint_layer_index == layer_index and key.startswith("transformer_blocks"):
50
+ lora_state_dicts[key] = value
51
+
52
+ lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
53
+ dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=lora_weights, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=number
54
+ )
55
+
56
+ # Load the weights from the checkpoint dictionary into the corresponding layers
57
+ for n in range(number):
58
+ lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
59
+ lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
60
+ lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
61
+ lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
62
+ lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
63
+ lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
64
+ lora_attn_procs[name].proj_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.down.weight', None)
65
+ lora_attn_procs[name].proj_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.up.weight', None)
66
+ lora_attn_procs[name].to(device)
67
+
68
+ elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
69
+
70
+ lora_state_dicts = {}
71
+ for key, value in checkpoint.items():
72
+ # Match based on the layer index in the key (assuming the key contains layer index)
73
+ if re.search(r'\.(\d+)\.', key):
74
+ checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
75
+ if checkpoint_layer_index == layer_index and key.startswith("single_transformer_blocks"):
76
+ lora_state_dicts[key] = value
77
+
78
+ lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
79
+ dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=lora_weights, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=number
80
+ )
81
+ # Load the weights from the checkpoint dictionary into the corresponding layers
82
+ for n in range(number):
83
+ lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
84
+ lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
85
+ lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
86
+ lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
87
+ lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
88
+ lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
89
+ lora_attn_procs[name].to(device)
90
+ else:
91
+ lora_attn_procs[name] = FluxAttnProcessor2_0()
92
+
93
+ transformer.set_attn_processor(lora_attn_procs)
94
+
95
+
96
+ def update_model_with_multi_lora(checkpoints, lora_weights, transformer, cond_size):
97
+ ck_number = len(checkpoints)
98
+ cond_lora_number = [len(ls) for ls in lora_weights]
99
+ cond_number = sum(cond_lora_number)
100
+ ranks = [get_lora_rank(checkpoint) for checkpoint in checkpoints]
101
+ multi_lora_weight = []
102
+ for ls in lora_weights:
103
+ for n in ls:
104
+ multi_lora_weight.append(n)
105
+
106
+ lora_attn_procs = {}
107
+ double_blocks_idx = list(range(19))
108
+ single_blocks_idx = list(range(38))
109
+ for name, attn_processor in transformer.attn_processors.items():
110
+ match = re.search(r'\.(\d+)\.', name)
111
+ if match:
112
+ layer_index = int(match.group(1))
113
+
114
+ if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
115
+ lora_state_dicts = [{} for _ in range(ck_number)]
116
+ for idx, checkpoint in enumerate(checkpoints):
117
+ for key, value in checkpoint.items():
118
+ # Match based on the layer index in the key (assuming the key contains layer index)
119
+ if re.search(r'\.(\d+)\.', key):
120
+ checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
121
+ if checkpoint_layer_index == layer_index and key.startswith("transformer_blocks"):
122
+ lora_state_dicts[idx][key] = value
123
+
124
+ lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
125
+ dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=multi_lora_weight, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=cond_number
126
+ )
127
+
128
+ # Load the weights from the checkpoint dictionary into the corresponding layers
129
+ num = 0
130
+ for idx in range(ck_number):
131
+ for n in range(cond_lora_number[idx]):
132
+ lora_attn_procs[name].q_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.down.weight', None)
133
+ lora_attn_procs[name].q_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.up.weight', None)
134
+ lora_attn_procs[name].k_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.down.weight', None)
135
+ lora_attn_procs[name].k_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.up.weight', None)
136
+ lora_attn_procs[name].v_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.down.weight', None)
137
+ lora_attn_procs[name].v_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.up.weight', None)
138
+ lora_attn_procs[name].proj_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.proj_loras.{n}.down.weight', None)
139
+ lora_attn_procs[name].proj_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.proj_loras.{n}.up.weight', None)
140
+ lora_attn_procs[name].to(device)
141
+ num += 1
142
+
143
+ elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
144
+
145
+ lora_state_dicts = [{} for _ in range(ck_number)]
146
+ for idx, checkpoint in enumerate(checkpoints):
147
+ for key, value in checkpoint.items():
148
+ # Match based on the layer index in the key (assuming the key contains layer index)
149
+ if re.search(r'\.(\d+)\.', key):
150
+ checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
151
+ if checkpoint_layer_index == layer_index and key.startswith("single_transformer_blocks"):
152
+ lora_state_dicts[idx][key] = value
153
+
154
+ lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
155
+ dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=multi_lora_weight, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=cond_number
156
+ )
157
+ # Load the weights from the checkpoint dictionary into the corresponding layers
158
+ num = 0
159
+ for idx in range(ck_number):
160
+ for n in range(cond_lora_number[idx]):
161
+ lora_attn_procs[name].q_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.down.weight', None)
162
+ lora_attn_procs[name].q_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.up.weight', None)
163
+ lora_attn_procs[name].k_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.down.weight', None)
164
+ lora_attn_procs[name].k_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.up.weight', None)
165
+ lora_attn_procs[name].v_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.down.weight', None)
166
+ lora_attn_procs[name].v_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.up.weight', None)
167
+ lora_attn_procs[name].to(device)
168
+ num += 1
169
+
170
+ else:
171
+ lora_attn_procs[name] = FluxAttnProcessor2_0()
172
+
173
+ transformer.set_attn_processor(lora_attn_procs)
174
+
175
+
176
+ def set_single_lora(transformer, local_path, lora_weights=[], cond_size=512):
177
+ checkpoint = load_checkpoint(local_path)
178
+ update_model_with_lora(checkpoint, lora_weights, transformer, cond_size)
179
+
180
+ def set_multi_lora(transformer, local_paths, lora_weights=[[]], cond_size=512):
181
+ checkpoints = [load_checkpoint(local_path) for local_path in local_paths]
182
+ update_model_with_multi_lora(checkpoints, lora_weights, transformer, cond_size)
183
+
184
+ def unset_lora(transformer):
185
+ lora_attn_procs = {}
186
+ for name, attn_processor in transformer.attn_processors.items():
187
+ lora_attn_procs[name] = FluxAttnProcessor2_0()
188
+ transformer.set_attn_processor(lora_attn_procs)
189
+
190
+
191
+ '''
192
+ unset_lora(pipe.transformer)
193
+ lora_path = "./lora.safetensors"
194
+ lora_weights = [1, 1]
195
+ set_lora(pipe.transformer, local_path=lora_path, lora_weights=lora_weights, cond_size=512)
196
+ '''
src/pipeline.py ADDED
@@ -0,0 +1,722 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import inspect
2
+ from typing import Any, Callable, Dict, List, Optional, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
7
+
8
+ from diffusers.image_processor import (VaeImageProcessor)
9
+ from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin
10
+ from diffusers.models.autoencoders import AutoencoderKL
11
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
12
+ from diffusers.utils import (
13
+ USE_PEFT_BACKEND,
14
+ is_torch_xla_available,
15
+ logging,
16
+ scale_lora_layers,
17
+ unscale_lora_layers,
18
+ )
19
+ from diffusers.utils.torch_utils import randn_tensor
20
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
21
+ from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
22
+ from torchvision.transforms.functional import pad
23
+ from .transformer_flux import FluxTransformer2DModel
24
+
25
+ if is_torch_xla_available():
26
+ import torch_xla.core.xla_model as xm
27
+
28
+ XLA_AVAILABLE = True
29
+ else:
30
+ XLA_AVAILABLE = False
31
+
32
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
+
34
+ def calculate_shift(
35
+ image_seq_len,
36
+ base_seq_len: int = 256,
37
+ max_seq_len: int = 4096,
38
+ base_shift: float = 0.5,
39
+ max_shift: float = 1.16,
40
+ ):
41
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
42
+ b = base_shift - m * base_seq_len
43
+ mu = image_seq_len * m + b
44
+ return mu
45
+
46
+ def prepare_latent_image_ids_(height, width, device, dtype):
47
+ latent_image_ids = torch.zeros(height//2, width//2, 3, device=device, dtype=dtype)
48
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height//2, device=device)[:, None] # y
49
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width//2, device=device)[None, :] # x
50
+ return latent_image_ids
51
+
52
+ def prepare_latent_subject_ids(height, width, device, dtype):
53
+ latent_image_ids = torch.zeros(height // 2, width // 2, 3, device=device, dtype=dtype)
54
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2, device=device)[:, None]
55
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2, device=device)[None, :]
56
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
57
+ latent_image_ids = latent_image_ids.reshape(
58
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
59
+ )
60
+ return latent_image_ids.to(device=device, dtype=dtype)
61
+
62
+ def resize_position_encoding(batch_size, original_height, original_width, target_height, target_width, device, dtype):
63
+ latent_image_ids = prepare_latent_image_ids_(original_height, original_width, device, dtype)
64
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
65
+ latent_image_ids = latent_image_ids.reshape(
66
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
67
+ )
68
+
69
+ scale_h = original_height / target_height
70
+ scale_w = original_width / target_width
71
+ latent_image_ids_resized = torch.zeros(target_height//2, target_width//2, 3, device=device, dtype=dtype)
72
+ latent_image_ids_resized[..., 1] = latent_image_ids_resized[..., 1] + torch.arange(target_height//2, device=device)[:, None] * scale_h
73
+ latent_image_ids_resized[..., 2] = latent_image_ids_resized[..., 2] + torch.arange(target_width//2, device=device)[None, :] * scale_w
74
+
75
+ cond_latent_image_id_height, cond_latent_image_id_width, cond_latent_image_id_channels = latent_image_ids_resized.shape
76
+ cond_latent_image_ids = latent_image_ids_resized.reshape(
77
+ cond_latent_image_id_height * cond_latent_image_id_width, cond_latent_image_id_channels
78
+ )
79
+ return latent_image_ids, cond_latent_image_ids
80
+
81
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
82
+ def retrieve_latents(
83
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
84
+ ):
85
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
86
+ return encoder_output.latent_dist.sample(generator)
87
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
88
+ return encoder_output.latent_dist.mode()
89
+ elif hasattr(encoder_output, "latents"):
90
+ return encoder_output.latents
91
+ else:
92
+ raise AttributeError("Could not access latents of provided encoder_output")
93
+
94
+
95
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
96
+ def retrieve_timesteps(
97
+ scheduler,
98
+ num_inference_steps: Optional[int] = None,
99
+ device: Optional[Union[str, torch.device]] = None,
100
+ timesteps: Optional[List[int]] = None,
101
+ sigmas: Optional[List[float]] = None,
102
+ **kwargs,
103
+ ):
104
+ if timesteps is not None and sigmas is not None:
105
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
106
+ if timesteps is not None:
107
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
108
+ if not accepts_timesteps:
109
+ raise ValueError(
110
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
111
+ f" timestep schedules. Please check whether you are using the correct scheduler."
112
+ )
113
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
114
+ timesteps = scheduler.timesteps
115
+ num_inference_steps = len(timesteps)
116
+ elif sigmas is not None:
117
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
118
+ if not accept_sigmas:
119
+ raise ValueError(
120
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
121
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
122
+ )
123
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
124
+ timesteps = scheduler.timesteps
125
+ num_inference_steps = len(timesteps)
126
+ else:
127
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
128
+ timesteps = scheduler.timesteps
129
+ return timesteps, num_inference_steps
130
+
131
+
132
+ class FluxPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
133
+ def __init__(
134
+ self,
135
+ scheduler: FlowMatchEulerDiscreteScheduler,
136
+ vae: AutoencoderKL,
137
+ text_encoder: CLIPTextModel,
138
+ tokenizer: CLIPTokenizer,
139
+ text_encoder_2: T5EncoderModel,
140
+ tokenizer_2: T5TokenizerFast,
141
+ transformer: FluxTransformer2DModel,
142
+ ):
143
+ super().__init__()
144
+
145
+ self.register_modules(
146
+ vae=vae,
147
+ text_encoder=text_encoder,
148
+ text_encoder_2=text_encoder_2,
149
+ tokenizer=tokenizer,
150
+ tokenizer_2=tokenizer_2,
151
+ transformer=transformer,
152
+ scheduler=scheduler,
153
+ )
154
+ self.vae_scale_factor = (
155
+ 2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
156
+ )
157
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
158
+ self.tokenizer_max_length = (
159
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
160
+ )
161
+ self.default_sample_size = 64
162
+
163
+ def _get_t5_prompt_embeds(
164
+ self,
165
+ prompt: Union[str, List[str]] = None,
166
+ num_images_per_prompt: int = 1,
167
+ max_sequence_length: int = 512,
168
+ device: Optional[torch.device] = None,
169
+ dtype: Optional[torch.dtype] = None,
170
+ ):
171
+ device = device or self._execution_device
172
+ dtype = dtype or self.text_encoder.dtype
173
+
174
+ prompt = [prompt] if isinstance(prompt, str) else prompt
175
+ batch_size = len(prompt)
176
+
177
+ text_inputs = self.tokenizer_2(
178
+ prompt,
179
+ padding="max_length",
180
+ max_length=max_sequence_length,
181
+ truncation=True,
182
+ return_length=False,
183
+ return_overflowing_tokens=False,
184
+ return_tensors="pt",
185
+ )
186
+ text_input_ids = text_inputs.input_ids
187
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
188
+
189
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
190
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1: -1])
191
+ logger.warning(
192
+ "The following part of your input was truncated because `max_sequence_length` is set to "
193
+ f" {max_sequence_length} tokens: {removed_text}"
194
+ )
195
+
196
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
197
+
198
+ dtype = self.text_encoder_2.dtype
199
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
200
+
201
+ _, seq_len, _ = prompt_embeds.shape
202
+
203
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
204
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
205
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
206
+
207
+ return prompt_embeds
208
+
209
+ def _get_clip_prompt_embeds(
210
+ self,
211
+ prompt: Union[str, List[str]],
212
+ num_images_per_prompt: int = 1,
213
+ device: Optional[torch.device] = None,
214
+ ):
215
+ device = device or self._execution_device
216
+
217
+ prompt = [prompt] if isinstance(prompt, str) else prompt
218
+ batch_size = len(prompt)
219
+
220
+ text_inputs = self.tokenizer(
221
+ prompt,
222
+ padding="max_length",
223
+ max_length=self.tokenizer_max_length,
224
+ truncation=True,
225
+ return_overflowing_tokens=False,
226
+ return_length=False,
227
+ return_tensors="pt",
228
+ )
229
+
230
+ text_input_ids = text_inputs.input_ids
231
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
232
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
233
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1: -1])
234
+ logger.warning(
235
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
236
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
237
+ )
238
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
239
+
240
+ # Use pooled output of CLIPTextModel
241
+ prompt_embeds = prompt_embeds.pooler_output
242
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
243
+
244
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
245
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
246
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
247
+
248
+ return prompt_embeds
249
+
250
+ def encode_prompt(
251
+ self,
252
+ prompt: Union[str, List[str]],
253
+ prompt_2: Union[str, List[str]],
254
+ device: Optional[torch.device] = None,
255
+ num_images_per_prompt: int = 1,
256
+ prompt_embeds: Optional[torch.FloatTensor] = None,
257
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
258
+ max_sequence_length: int = 512,
259
+ lora_scale: Optional[float] = None,
260
+ ):
261
+ device = device or self._execution_device
262
+
263
+ # set lora scale so that monkey patched LoRA
264
+ # function of text encoder can correctly access it
265
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
266
+ self._lora_scale = lora_scale
267
+
268
+ # dynamically adjust the LoRA scale
269
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
270
+ scale_lora_layers(self.text_encoder, lora_scale)
271
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
272
+ scale_lora_layers(self.text_encoder_2, lora_scale)
273
+
274
+ prompt = [prompt] if isinstance(prompt, str) else prompt
275
+
276
+ if prompt_embeds is None:
277
+ prompt_2 = prompt_2 or prompt
278
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
279
+
280
+ # We only use the pooled prompt output from the CLIPTextModel
281
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
282
+ prompt=prompt,
283
+ device=device,
284
+ num_images_per_prompt=num_images_per_prompt,
285
+ )
286
+ prompt_embeds = self._get_t5_prompt_embeds(
287
+ prompt=prompt_2,
288
+ num_images_per_prompt=num_images_per_prompt,
289
+ max_sequence_length=max_sequence_length,
290
+ device=device,
291
+ )
292
+
293
+ if self.text_encoder is not None:
294
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
295
+ # Retrieve the original scale by scaling back the LoRA layers
296
+ unscale_lora_layers(self.text_encoder, lora_scale)
297
+
298
+ if self.text_encoder_2 is not None:
299
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
300
+ # Retrieve the original scale by scaling back the LoRA layers
301
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
302
+
303
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
304
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
305
+
306
+ return prompt_embeds, pooled_prompt_embeds, text_ids
307
+
308
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
309
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
310
+ if isinstance(generator, list):
311
+ image_latents = [
312
+ retrieve_latents(self.vae.encode(image[i: i + 1]), generator=generator[i])
313
+ for i in range(image.shape[0])
314
+ ]
315
+ image_latents = torch.cat(image_latents, dim=0)
316
+ else:
317
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
318
+
319
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
320
+
321
+ return image_latents
322
+
323
+ def check_inputs(
324
+ self,
325
+ prompt,
326
+ prompt_2,
327
+ height,
328
+ width,
329
+ prompt_embeds=None,
330
+ pooled_prompt_embeds=None,
331
+ callback_on_step_end_tensor_inputs=None,
332
+ max_sequence_length=None,
333
+ ):
334
+ if height % 8 != 0 or width % 8 != 0:
335
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
336
+
337
+ if prompt is not None and prompt_embeds is not None:
338
+ raise ValueError(
339
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
340
+ " only forward one of the two."
341
+ )
342
+ elif prompt_2 is not None and prompt_embeds is not None:
343
+ raise ValueError(
344
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
345
+ " only forward one of the two."
346
+ )
347
+ elif prompt is None and prompt_embeds is None:
348
+ raise ValueError(
349
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
350
+ )
351
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
352
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
353
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
354
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
355
+
356
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
357
+ raise ValueError(
358
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
359
+ )
360
+
361
+ if max_sequence_length is not None and max_sequence_length > 512:
362
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
363
+
364
+ @staticmethod
365
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
366
+ latent_image_ids = torch.zeros(height // 2, width // 2, 3)
367
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
368
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
369
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
370
+ latent_image_ids = latent_image_ids.reshape(
371
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
372
+ )
373
+ return latent_image_ids.to(device=device, dtype=dtype)
374
+
375
+ @staticmethod
376
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
377
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
378
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
379
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
380
+ return latents
381
+
382
+ @staticmethod
383
+ def _unpack_latents(latents, height, width, vae_scale_factor):
384
+ batch_size, num_patches, channels = latents.shape
385
+
386
+ height = height // vae_scale_factor
387
+ width = width // vae_scale_factor
388
+
389
+ latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
390
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
391
+
392
+ latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
393
+
394
+ return latents
395
+
396
+ def enable_vae_slicing(self):
397
+ r"""
398
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
399
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
400
+ """
401
+ self.vae.enable_slicing()
402
+
403
+ def disable_vae_slicing(self):
404
+ r"""
405
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
406
+ computing decoding in one step.
407
+ """
408
+ self.vae.disable_slicing()
409
+
410
+ def enable_vae_tiling(self):
411
+ r"""
412
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
413
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
414
+ processing larger images.
415
+ """
416
+ self.vae.enable_tiling()
417
+
418
+ def disable_vae_tiling(self):
419
+ r"""
420
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
421
+ computing decoding in one step.
422
+ """
423
+ self.vae.disable_tiling()
424
+
425
+ def prepare_latents(
426
+ self,
427
+ batch_size,
428
+ num_channels_latents,
429
+ height,
430
+ width,
431
+ dtype,
432
+ device,
433
+ generator,
434
+ subject_image,
435
+ condition_image,
436
+ latents=None,
437
+ cond_number=1,
438
+ sub_number=1
439
+ ):
440
+ height_cond = 2 * (self.cond_size // self.vae_scale_factor)
441
+ width_cond = 2 * (self.cond_size // self.vae_scale_factor)
442
+ height = 2 * (int(height) // self.vae_scale_factor)
443
+ width = 2 * (int(width) // self.vae_scale_factor)
444
+
445
+ shape = (batch_size, num_channels_latents, height, width) # 1 16 106 80
446
+ noise_latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
447
+ noise_latents = self._pack_latents(noise_latents, batch_size, num_channels_latents, height, width)
448
+ noise_latent_image_ids, cond_latent_image_ids = resize_position_encoding(
449
+ batch_size,
450
+ height,
451
+ width,
452
+ height_cond,
453
+ width_cond,
454
+ device,
455
+ dtype,
456
+ )
457
+
458
+ latents_to_concat = []
459
+ latents_ids_to_concat = [noise_latent_image_ids]
460
+
461
+ # subject
462
+ if subject_image is not None:
463
+ shape_subject = (batch_size, num_channels_latents, height_cond*sub_number, width_cond)
464
+ subject_image = subject_image.to(device=device, dtype=dtype)
465
+ subject_image_latents = self._encode_vae_image(image=subject_image, generator=generator)
466
+ subject_latents = self._pack_latents(subject_image_latents, batch_size, num_channels_latents, height_cond*sub_number, width_cond)
467
+ mask2 = torch.zeros(shape_subject, device=device, dtype=dtype)
468
+ mask2 = self._pack_latents(mask2, batch_size, num_channels_latents, height_cond*sub_number, width_cond)
469
+ latent_subject_ids = prepare_latent_subject_ids(height_cond, width_cond, device, dtype)
470
+ latent_subject_ids[:, 1] += 64 # fixed offset
471
+ subject_latent_image_ids = torch.concat([latent_subject_ids for _ in range(sub_number)], dim=-2)
472
+ latents_to_concat.append(subject_latents)
473
+ latents_ids_to_concat.append(subject_latent_image_ids)
474
+
475
+ # spatial
476
+ if condition_image is not None:
477
+ shape_cond = (batch_size, num_channels_latents, height_cond*cond_number, width_cond)
478
+ condition_image = condition_image.to(device=device, dtype=dtype)
479
+ image_latents = self._encode_vae_image(image=condition_image, generator=generator)
480
+ cond_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height_cond*cond_number, width_cond)
481
+ mask3 = torch.zeros(shape_cond, device=device, dtype=dtype)
482
+ mask3 = self._pack_latents(mask3, batch_size, num_channels_latents, height_cond*cond_number, width_cond)
483
+ cond_latent_image_ids = cond_latent_image_ids
484
+ cond_latent_image_ids = torch.concat([cond_latent_image_ids for _ in range(cond_number)], dim=-2)
485
+ latents_ids_to_concat.append(cond_latent_image_ids)
486
+ latents_to_concat.append(cond_latents)
487
+
488
+ cond_latents = torch.concat(latents_to_concat, dim=-2)
489
+ latent_image_ids = torch.concat(latents_ids_to_concat, dim=-2)
490
+ return cond_latents, latent_image_ids, noise_latents
491
+
492
+ @property
493
+ def guidance_scale(self):
494
+ return self._guidance_scale
495
+
496
+ @property
497
+ def joint_attention_kwargs(self):
498
+ return self._joint_attention_kwargs
499
+
500
+ @property
501
+ def num_timesteps(self):
502
+ return self._num_timesteps
503
+
504
+ @property
505
+ def interrupt(self):
506
+ return self._interrupt
507
+
508
+ @torch.no_grad()
509
+ def __call__(
510
+ self,
511
+ prompt: Union[str, List[str]] = None,
512
+ prompt_2: Optional[Union[str, List[str]]] = None,
513
+ height: Optional[int] = None,
514
+ width: Optional[int] = None,
515
+ num_inference_steps: int = 28,
516
+ timesteps: List[int] = None,
517
+ guidance_scale: float = 3.5,
518
+ num_images_per_prompt: Optional[int] = 1,
519
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
520
+ latents: Optional[torch.FloatTensor] = None,
521
+ prompt_embeds: Optional[torch.FloatTensor] = None,
522
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
523
+ output_type: Optional[str] = "pil",
524
+ return_dict: bool = True,
525
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
526
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
527
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
528
+ max_sequence_length: int = 512,
529
+ spatial_images=None,
530
+ subject_images=None,
531
+ cond_size=512,
532
+ ):
533
+
534
+ height = height or self.default_sample_size * self.vae_scale_factor
535
+ width = width or self.default_sample_size * self.vae_scale_factor
536
+ self.cond_size = cond_size
537
+
538
+ # 1. Check inputs. Raise error if not correct
539
+ self.check_inputs(
540
+ prompt,
541
+ prompt_2,
542
+ height,
543
+ width,
544
+ prompt_embeds=prompt_embeds,
545
+ pooled_prompt_embeds=pooled_prompt_embeds,
546
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
547
+ max_sequence_length=max_sequence_length,
548
+ )
549
+
550
+ self._guidance_scale = guidance_scale
551
+ self._joint_attention_kwargs = joint_attention_kwargs
552
+ self._interrupt = False
553
+
554
+ cond_number = len(spatial_images)
555
+ sub_number = len(subject_images)
556
+
557
+ if sub_number > 0:
558
+ subject_image_ls = []
559
+ for subject_image in subject_images:
560
+ w, h = subject_image.size[:2]
561
+ scale = self.cond_size / max(h, w)
562
+ new_h, new_w = int(h * scale), int(w * scale)
563
+ subject_image = self.image_processor.preprocess(subject_image, height=new_h, width=new_w)
564
+ subject_image = subject_image.to(dtype=torch.float32)
565
+ pad_h = cond_size - subject_image.shape[-2]
566
+ pad_w = cond_size - subject_image.shape[-1]
567
+ subject_image = pad(
568
+ subject_image,
569
+ padding=(int(pad_w / 2), int(pad_h / 2), int(pad_w / 2), int(pad_h / 2)),
570
+ fill=0
571
+ )
572
+ subject_image_ls.append(subject_image)
573
+ subject_image = torch.concat(subject_image_ls, dim=-2)
574
+ else:
575
+ subject_image = None
576
+
577
+ if cond_number > 0:
578
+ condition_image_ls = []
579
+ for img in spatial_images:
580
+ condition_image = self.image_processor.preprocess(img, height=self.cond_size, width=self.cond_size)
581
+ condition_image = condition_image.to(dtype=torch.float32)
582
+ condition_image_ls.append(condition_image)
583
+ condition_image = torch.concat(condition_image_ls, dim=-2)
584
+ else:
585
+ condition_image = None
586
+
587
+ # 2. Define call parameters
588
+ if prompt is not None and isinstance(prompt, str):
589
+ batch_size = 1
590
+ elif prompt is not None and isinstance(prompt, list):
591
+ batch_size = len(prompt)
592
+ else:
593
+ batch_size = prompt_embeds.shape[0]
594
+
595
+ device = self._execution_device
596
+
597
+ lora_scale = (
598
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
599
+ )
600
+ (
601
+ prompt_embeds,
602
+ pooled_prompt_embeds,
603
+ text_ids,
604
+ ) = self.encode_prompt(
605
+ prompt=prompt,
606
+ prompt_2=prompt_2,
607
+ prompt_embeds=prompt_embeds,
608
+ pooled_prompt_embeds=pooled_prompt_embeds,
609
+ device=device,
610
+ num_images_per_prompt=num_images_per_prompt,
611
+ max_sequence_length=max_sequence_length,
612
+ lora_scale=lora_scale,
613
+ )
614
+
615
+ # 4. Prepare latent variables
616
+ num_channels_latents = self.transformer.config.in_channels // 4 # 16
617
+ cond_latents, latent_image_ids, noise_latents = self.prepare_latents(
618
+ batch_size * num_images_per_prompt,
619
+ num_channels_latents,
620
+ height,
621
+ width,
622
+ prompt_embeds.dtype,
623
+ device,
624
+ generator,
625
+ subject_image,
626
+ condition_image,
627
+ latents,
628
+ cond_number,
629
+ sub_number
630
+ )
631
+ latents = noise_latents
632
+ # 5. Prepare timesteps
633
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
634
+ image_seq_len = latents.shape[1]
635
+ mu = calculate_shift(
636
+ image_seq_len,
637
+ self.scheduler.config.base_image_seq_len,
638
+ self.scheduler.config.max_image_seq_len,
639
+ self.scheduler.config.base_shift,
640
+ self.scheduler.config.max_shift,
641
+ )
642
+ timesteps, num_inference_steps = retrieve_timesteps(
643
+ self.scheduler,
644
+ num_inference_steps,
645
+ device,
646
+ timesteps,
647
+ sigmas,
648
+ mu=mu,
649
+ )
650
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
651
+ self._num_timesteps = len(timesteps)
652
+
653
+ # handle guidance
654
+ if self.transformer.config.guidance_embeds:
655
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
656
+ guidance = guidance.expand(latents.shape[0])
657
+ else:
658
+ guidance = None
659
+
660
+ # 6. Denoising loop
661
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
662
+ for i, t in enumerate(timesteps):
663
+ if self.interrupt:
664
+ continue
665
+
666
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
667
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
668
+ noise_pred = self.transformer(
669
+ hidden_states=latents,
670
+ cond_hidden_states=cond_latents,
671
+ timestep=timestep / 1000,
672
+ guidance=guidance,
673
+ pooled_projections=pooled_prompt_embeds,
674
+ encoder_hidden_states=prompt_embeds,
675
+ txt_ids=text_ids,
676
+ img_ids=latent_image_ids,
677
+ joint_attention_kwargs=self.joint_attention_kwargs,
678
+ return_dict=False,
679
+ )[0]
680
+
681
+ # compute the previous noisy sample x_t -> x_t-1
682
+ latents_dtype = latents.dtype
683
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
684
+ latents = latents
685
+
686
+ if latents.dtype != latents_dtype:
687
+ if torch.backends.mps.is_available():
688
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
689
+ latents = latents.to(latents_dtype)
690
+
691
+ if callback_on_step_end is not None:
692
+ callback_kwargs = {}
693
+ for k in callback_on_step_end_tensor_inputs:
694
+ callback_kwargs[k] = locals()[k]
695
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
696
+
697
+ latents = callback_outputs.pop("latents", latents)
698
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
699
+
700
+ # call the callback, if provided
701
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
702
+ progress_bar.update()
703
+
704
+ if XLA_AVAILABLE:
705
+ xm.mark_step()
706
+
707
+ if output_type == "latent":
708
+ image = latents
709
+
710
+ else:
711
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
712
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
713
+ image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0]
714
+ image = self.image_processor.postprocess(image, output_type=output_type)
715
+
716
+ # Offload all models
717
+ self.maybe_free_model_hooks()
718
+
719
+ if not return_dict:
720
+ return (image,)
721
+
722
+ return FluxPipelineOutput(images=image)
src/prompt_helper.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def load_text_encoders(args, class_one, class_two):
5
+ text_encoder_one = class_one.from_pretrained(
6
+ args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
7
+ )
8
+ text_encoder_two = class_two.from_pretrained(
9
+ args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
10
+ )
11
+ return text_encoder_one, text_encoder_two
12
+
13
+
14
+ def tokenize_prompt(tokenizer, prompt, max_sequence_length):
15
+ text_inputs = tokenizer(
16
+ prompt,
17
+ padding="max_length",
18
+ max_length=max_sequence_length,
19
+ truncation=True,
20
+ return_length=False,
21
+ return_overflowing_tokens=False,
22
+ return_tensors="pt",
23
+ )
24
+ text_input_ids = text_inputs.input_ids
25
+ return text_input_ids
26
+
27
+
28
+ def tokenize_prompt_clip(tokenizer, prompt):
29
+ text_inputs = tokenizer(
30
+ prompt,
31
+ padding="max_length",
32
+ max_length=77,
33
+ truncation=True,
34
+ return_length=False,
35
+ return_overflowing_tokens=False,
36
+ return_tensors="pt",
37
+ )
38
+ text_input_ids = text_inputs.input_ids
39
+ return text_input_ids
40
+
41
+
42
+ def tokenize_prompt_t5(tokenizer, prompt):
43
+ text_inputs = tokenizer(
44
+ prompt,
45
+ padding="max_length",
46
+ max_length=512,
47
+ truncation=True,
48
+ return_length=False,
49
+ return_overflowing_tokens=False,
50
+ return_tensors="pt",
51
+ )
52
+ text_input_ids = text_inputs.input_ids
53
+ return text_input_ids
54
+
55
+
56
+ def _encode_prompt_with_t5(
57
+ text_encoder,
58
+ tokenizer,
59
+ max_sequence_length=512,
60
+ prompt=None,
61
+ num_images_per_prompt=1,
62
+ device=None,
63
+ text_input_ids=None,
64
+ ):
65
+ prompt = [prompt] if isinstance(prompt, str) else prompt
66
+ batch_size = len(prompt)
67
+
68
+ if tokenizer is not None:
69
+ text_inputs = tokenizer(
70
+ prompt,
71
+ padding="max_length",
72
+ max_length=max_sequence_length,
73
+ truncation=True,
74
+ return_length=False,
75
+ return_overflowing_tokens=False,
76
+ return_tensors="pt",
77
+ )
78
+ text_input_ids = text_inputs.input_ids
79
+ else:
80
+ if text_input_ids is None:
81
+ raise ValueError("text_input_ids must be provided when the tokenizer is not specified")
82
+
83
+ prompt_embeds = text_encoder(text_input_ids.to(device))[0]
84
+
85
+ dtype = text_encoder.dtype
86
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
87
+
88
+ _, seq_len, _ = prompt_embeds.shape
89
+
90
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
91
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
92
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
93
+
94
+ return prompt_embeds
95
+
96
+
97
+ def _encode_prompt_with_clip(
98
+ text_encoder,
99
+ tokenizer,
100
+ prompt: str,
101
+ device=None,
102
+ text_input_ids=None,
103
+ num_images_per_prompt: int = 1,
104
+ ):
105
+ prompt = [prompt] if isinstance(prompt, str) else prompt
106
+ batch_size = len(prompt)
107
+
108
+ if tokenizer is not None:
109
+ text_inputs = tokenizer(
110
+ prompt,
111
+ padding="max_length",
112
+ max_length=77,
113
+ truncation=True,
114
+ return_overflowing_tokens=False,
115
+ return_length=False,
116
+ return_tensors="pt",
117
+ )
118
+
119
+ text_input_ids = text_inputs.input_ids
120
+ else:
121
+ if text_input_ids is None:
122
+ raise ValueError("text_input_ids must be provided when the tokenizer is not specified")
123
+
124
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=False)
125
+
126
+ # Use pooled output of CLIPTextModel
127
+ prompt_embeds = prompt_embeds.pooler_output
128
+ prompt_embeds = prompt_embeds.to(dtype=text_encoder.dtype, device=device)
129
+
130
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
131
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
132
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
133
+
134
+ return prompt_embeds
135
+
136
+
137
+ def encode_prompt(
138
+ text_encoders,
139
+ tokenizers,
140
+ prompt: str,
141
+ max_sequence_length,
142
+ device=None,
143
+ num_images_per_prompt: int = 1,
144
+ text_input_ids_list=None,
145
+ ):
146
+ prompt = [prompt] if isinstance(prompt, str) else prompt
147
+ dtype = text_encoders[0].dtype
148
+
149
+ pooled_prompt_embeds = _encode_prompt_with_clip(
150
+ text_encoder=text_encoders[0],
151
+ tokenizer=tokenizers[0],
152
+ prompt=prompt,
153
+ device=device if device is not None else text_encoders[0].device,
154
+ num_images_per_prompt=num_images_per_prompt,
155
+ text_input_ids=text_input_ids_list[0] if text_input_ids_list else None,
156
+ )
157
+
158
+ prompt_embeds = _encode_prompt_with_t5(
159
+ text_encoder=text_encoders[1],
160
+ tokenizer=tokenizers[1],
161
+ max_sequence_length=max_sequence_length,
162
+ prompt=prompt,
163
+ num_images_per_prompt=num_images_per_prompt,
164
+ device=device if device is not None else text_encoders[1].device,
165
+ text_input_ids=text_input_ids_list[1] if text_input_ids_list else None,
166
+ )
167
+
168
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
169
+
170
+ return prompt_embeds, pooled_prompt_embeds, text_ids
171
+
172
+
173
+ def encode_token_ids(text_encoders, tokens, accelerator, num_images_per_prompt=1, device=None):
174
+ text_encoder_clip = text_encoders[0]
175
+ text_encoder_t5 = text_encoders[1]
176
+ tokens_clip, tokens_t5 = tokens[0], tokens[1]
177
+ batch_size = tokens_clip.shape[0]
178
+
179
+ if device == "cpu":
180
+ device = "cpu"
181
+ else:
182
+ device = accelerator.device
183
+
184
+ # clip
185
+ prompt_embeds = text_encoder_clip(tokens_clip.to(device), output_hidden_states=False)
186
+ # Use pooled output of CLIPTextModel
187
+ prompt_embeds = prompt_embeds.pooler_output
188
+ prompt_embeds = prompt_embeds.to(dtype=text_encoder_clip.dtype, device=accelerator.device)
189
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
190
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
191
+ pooled_prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
192
+ pooled_prompt_embeds = pooled_prompt_embeds.to(dtype=text_encoder_clip.dtype, device=accelerator.device)
193
+
194
+ # t5
195
+ prompt_embeds = text_encoder_t5(tokens_t5.to(device))[0]
196
+ dtype = text_encoder_t5.dtype
197
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=accelerator.device)
198
+ _, seq_len, _ = prompt_embeds.shape
199
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
200
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
201
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
202
+
203
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=accelerator.device, dtype=dtype)
204
+
205
+ return prompt_embeds, pooled_prompt_embeds, text_ids
src/transformer_flux.py ADDED
@@ -0,0 +1,583 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, Optional, Tuple, Union
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+
8
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
9
+ from diffusers.loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
10
+ from diffusers.models.attention import FeedForward
11
+ from diffusers.models.attention_processor import (
12
+ Attention,
13
+ AttentionProcessor,
14
+ FluxAttnProcessor2_0,
15
+ FluxAttnProcessor2_0_NPU,
16
+ FusedFluxAttnProcessor2_0,
17
+ )
18
+ from diffusers.models.modeling_utils import ModelMixin
19
+ from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
20
+ from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
21
+ from diffusers.utils.import_utils import is_torch_npu_available
22
+ from diffusers.utils.torch_utils import maybe_allow_in_graph
23
+ from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
24
+ from diffusers.models.modeling_outputs import Transformer2DModelOutput
25
+
26
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
27
+
28
+ @maybe_allow_in_graph
29
+ class FluxSingleTransformerBlock(nn.Module):
30
+
31
+ def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
32
+ super().__init__()
33
+ self.mlp_hidden_dim = int(dim * mlp_ratio)
34
+
35
+ self.norm = AdaLayerNormZeroSingle(dim)
36
+ self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
37
+ self.act_mlp = nn.GELU(approximate="tanh")
38
+ self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
39
+
40
+ if is_torch_npu_available():
41
+ processor = FluxAttnProcessor2_0_NPU()
42
+ else:
43
+ processor = FluxAttnProcessor2_0()
44
+ self.attn = Attention(
45
+ query_dim=dim,
46
+ cross_attention_dim=None,
47
+ dim_head=attention_head_dim,
48
+ heads=num_attention_heads,
49
+ out_dim=dim,
50
+ bias=True,
51
+ processor=processor,
52
+ qk_norm="rms_norm",
53
+ eps=1e-6,
54
+ pre_only=True,
55
+ )
56
+
57
+ def forward(
58
+ self,
59
+ hidden_states: torch.Tensor,
60
+ cond_hidden_states: torch.Tensor,
61
+ temb: torch.Tensor,
62
+ cond_temb: torch.Tensor,
63
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
64
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
65
+ ) -> torch.Tensor:
66
+ use_cond = cond_hidden_states is not None
67
+
68
+ residual = hidden_states
69
+ norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
70
+ mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
71
+
72
+ if use_cond:
73
+ residual_cond = cond_hidden_states
74
+ norm_cond_hidden_states, cond_gate = self.norm(cond_hidden_states, emb=cond_temb)
75
+ mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_cond_hidden_states))
76
+
77
+ norm_hidden_states_concat = torch.concat([norm_hidden_states, norm_cond_hidden_states], dim=-2)
78
+
79
+ joint_attention_kwargs = joint_attention_kwargs or {}
80
+ attn_output = self.attn(
81
+ hidden_states=norm_hidden_states_concat,
82
+ image_rotary_emb=image_rotary_emb,
83
+ use_cond=use_cond,
84
+ **joint_attention_kwargs,
85
+ )
86
+ if use_cond:
87
+ attn_output, cond_attn_output = attn_output
88
+
89
+ hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
90
+ gate = gate.unsqueeze(1)
91
+ hidden_states = gate * self.proj_out(hidden_states)
92
+ hidden_states = residual + hidden_states
93
+
94
+ if use_cond:
95
+ condition_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2)
96
+ cond_gate = cond_gate.unsqueeze(1)
97
+ condition_latents = cond_gate * self.proj_out(condition_latents)
98
+ condition_latents = residual_cond + condition_latents
99
+
100
+ if hidden_states.dtype == torch.float16:
101
+ hidden_states = hidden_states.clip(-65504, 65504)
102
+
103
+ return hidden_states, condition_latents if use_cond else None
104
+
105
+
106
+ @maybe_allow_in_graph
107
+ class FluxTransformerBlock(nn.Module):
108
+ def __init__(
109
+ self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
110
+ ):
111
+ super().__init__()
112
+
113
+ self.norm1 = AdaLayerNormZero(dim)
114
+
115
+ self.norm1_context = AdaLayerNormZero(dim)
116
+
117
+ if hasattr(F, "scaled_dot_product_attention"):
118
+ processor = FluxAttnProcessor2_0()
119
+ else:
120
+ raise ValueError(
121
+ "The current PyTorch version does not support the `scaled_dot_product_attention` function."
122
+ )
123
+ self.attn = Attention(
124
+ query_dim=dim,
125
+ cross_attention_dim=None,
126
+ added_kv_proj_dim=dim,
127
+ dim_head=attention_head_dim,
128
+ heads=num_attention_heads,
129
+ out_dim=dim,
130
+ context_pre_only=False,
131
+ bias=True,
132
+ processor=processor,
133
+ qk_norm=qk_norm,
134
+ eps=eps,
135
+ )
136
+
137
+ self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
138
+ self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
139
+
140
+ self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
141
+ self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
142
+
143
+ # let chunk size default to None
144
+ self._chunk_size = None
145
+ self._chunk_dim = 0
146
+
147
+ def forward(
148
+ self,
149
+ hidden_states: torch.Tensor,
150
+ cond_hidden_states: torch.Tensor,
151
+ encoder_hidden_states: torch.Tensor,
152
+ temb: torch.Tensor,
153
+ cond_temb: torch.Tensor,
154
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
155
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
156
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
157
+ use_cond = cond_hidden_states is not None
158
+
159
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
160
+ if use_cond:
161
+ (
162
+ norm_cond_hidden_states,
163
+ cond_gate_msa,
164
+ cond_shift_mlp,
165
+ cond_scale_mlp,
166
+ cond_gate_mlp,
167
+ ) = self.norm1(cond_hidden_states, emb=cond_temb)
168
+
169
+ norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
170
+ encoder_hidden_states, emb=temb
171
+ )
172
+
173
+ norm_hidden_states = torch.concat([norm_hidden_states, norm_cond_hidden_states], dim=-2)
174
+
175
+ joint_attention_kwargs = joint_attention_kwargs or {}
176
+ # Attention.
177
+ attention_outputs = self.attn(
178
+ hidden_states=norm_hidden_states,
179
+ encoder_hidden_states=norm_encoder_hidden_states,
180
+ image_rotary_emb=image_rotary_emb,
181
+ use_cond=use_cond,
182
+ **joint_attention_kwargs,
183
+ )
184
+
185
+ attn_output, context_attn_output = attention_outputs[:2]
186
+ cond_attn_output = attention_outputs[2] if use_cond else None
187
+
188
+ # Process attention outputs for the `hidden_states`.
189
+ attn_output = gate_msa.unsqueeze(1) * attn_output
190
+ hidden_states = hidden_states + attn_output
191
+
192
+ if use_cond:
193
+ cond_attn_output = cond_gate_msa.unsqueeze(1) * cond_attn_output
194
+ cond_hidden_states = cond_hidden_states + cond_attn_output
195
+
196
+ norm_hidden_states = self.norm2(hidden_states)
197
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
198
+
199
+ if use_cond:
200
+ norm_cond_hidden_states = self.norm2(cond_hidden_states)
201
+ norm_cond_hidden_states = (
202
+ norm_cond_hidden_states * (1 + cond_scale_mlp[:, None])
203
+ + cond_shift_mlp[:, None]
204
+ )
205
+
206
+ ff_output = self.ff(norm_hidden_states)
207
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
208
+ hidden_states = hidden_states + ff_output
209
+
210
+ if use_cond:
211
+ cond_ff_output = self.ff(norm_cond_hidden_states)
212
+ cond_ff_output = cond_gate_mlp.unsqueeze(1) * cond_ff_output
213
+ cond_hidden_states = cond_hidden_states + cond_ff_output
214
+
215
+ # Process attention outputs for the `encoder_hidden_states`.
216
+
217
+ context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
218
+ encoder_hidden_states = encoder_hidden_states + context_attn_output
219
+
220
+ norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
221
+ norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
222
+
223
+ context_ff_output = self.ff_context(norm_encoder_hidden_states)
224
+ encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
225
+ if encoder_hidden_states.dtype == torch.float16:
226
+ encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
227
+
228
+ return encoder_hidden_states, hidden_states, cond_hidden_states if use_cond else None
229
+
230
+
231
+ class FluxTransformer2DModel(
232
+ ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, FluxTransformer2DLoadersMixin
233
+ ):
234
+ _supports_gradient_checkpointing = True
235
+ _no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
236
+
237
+ @register_to_config
238
+ def __init__(
239
+ self,
240
+ patch_size: int = 1,
241
+ in_channels: int = 64,
242
+ out_channels: Optional[int] = None,
243
+ num_layers: int = 19,
244
+ num_single_layers: int = 38,
245
+ attention_head_dim: int = 128,
246
+ num_attention_heads: int = 24,
247
+ joint_attention_dim: int = 4096,
248
+ pooled_projection_dim: int = 768,
249
+ guidance_embeds: bool = False,
250
+ axes_dims_rope: Tuple[int] = (16, 56, 56),
251
+ ):
252
+ super().__init__()
253
+ self.out_channels = out_channels or in_channels
254
+ self.inner_dim = num_attention_heads * attention_head_dim
255
+
256
+ self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
257
+
258
+ text_time_guidance_cls = (
259
+ CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
260
+ )
261
+ self.time_text_embed = text_time_guidance_cls(
262
+ embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
263
+ )
264
+
265
+ self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
266
+ self.x_embedder = nn.Linear(in_channels, self.inner_dim)
267
+
268
+ self.transformer_blocks = nn.ModuleList(
269
+ [
270
+ FluxTransformerBlock(
271
+ dim=self.inner_dim,
272
+ num_attention_heads=num_attention_heads,
273
+ attention_head_dim=attention_head_dim,
274
+ )
275
+ for _ in range(num_layers)
276
+ ]
277
+ )
278
+
279
+ self.single_transformer_blocks = nn.ModuleList(
280
+ [
281
+ FluxSingleTransformerBlock(
282
+ dim=self.inner_dim,
283
+ num_attention_heads=num_attention_heads,
284
+ attention_head_dim=attention_head_dim,
285
+ )
286
+ for _ in range(num_single_layers)
287
+ ]
288
+ )
289
+
290
+ self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
291
+ self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
292
+
293
+ self.gradient_checkpointing = False
294
+
295
+ @property
296
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
297
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
298
+ r"""
299
+ Returns:
300
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
301
+ indexed by its weight name.
302
+ """
303
+ # set recursively
304
+ processors = {}
305
+
306
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
307
+ if hasattr(module, "get_processor"):
308
+ processors[f"{name}.processor"] = module.get_processor()
309
+
310
+ for sub_name, child in module.named_children():
311
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
312
+
313
+ return processors
314
+
315
+ for name, module in self.named_children():
316
+ fn_recursive_add_processors(name, module, processors)
317
+
318
+ return processors
319
+
320
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
321
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
322
+ r"""
323
+ Sets the attention processor to use to compute attention.
324
+
325
+ Parameters:
326
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
327
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
328
+ for **all** `Attention` layers.
329
+
330
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
331
+ processor. This is strongly recommended when setting trainable attention processors.
332
+
333
+ """
334
+ count = len(self.attn_processors.keys())
335
+
336
+ if isinstance(processor, dict) and len(processor) != count:
337
+ raise ValueError(
338
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
339
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
340
+ )
341
+
342
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
343
+ if hasattr(module, "set_processor"):
344
+ if not isinstance(processor, dict):
345
+ module.set_processor(processor)
346
+ else:
347
+ module.set_processor(processor.pop(f"{name}.processor"))
348
+
349
+ for sub_name, child in module.named_children():
350
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
351
+
352
+ for name, module in self.named_children():
353
+ fn_recursive_attn_processor(name, module, processor)
354
+
355
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
356
+ def fuse_qkv_projections(self):
357
+ """
358
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
359
+ are fused. For cross-attention modules, key and value projection matrices are fused.
360
+
361
+ <Tip warning={true}>
362
+
363
+ This API is 🧪 experimental.
364
+
365
+ </Tip>
366
+ """
367
+ self.original_attn_processors = None
368
+
369
+ for _, attn_processor in self.attn_processors.items():
370
+ if "Added" in str(attn_processor.__class__.__name__):
371
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
372
+
373
+ self.original_attn_processors = self.attn_processors
374
+
375
+ for module in self.modules():
376
+ if isinstance(module, Attention):
377
+ module.fuse_projections(fuse=True)
378
+
379
+ self.set_attn_processor(FusedFluxAttnProcessor2_0())
380
+
381
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
382
+ def unfuse_qkv_projections(self):
383
+ """Disables the fused QKV projection if enabled.
384
+
385
+ <Tip warning={true}>
386
+
387
+ This API is 🧪 experimental.
388
+
389
+ </Tip>
390
+
391
+ """
392
+ if self.original_attn_processors is not None:
393
+ self.set_attn_processor(self.original_attn_processors)
394
+
395
+ def _set_gradient_checkpointing(self, module, value=False):
396
+ if hasattr(module, "gradient_checkpointing"):
397
+ module.gradient_checkpointing = value
398
+
399
+ def forward(
400
+ self,
401
+ hidden_states: torch.Tensor,
402
+ cond_hidden_states: torch.Tensor = None,
403
+ encoder_hidden_states: torch.Tensor = None,
404
+ pooled_projections: torch.Tensor = None,
405
+ timestep: torch.LongTensor = None,
406
+ img_ids: torch.Tensor = None,
407
+ txt_ids: torch.Tensor = None,
408
+ guidance: torch.Tensor = None,
409
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
410
+ controlnet_block_samples=None,
411
+ controlnet_single_block_samples=None,
412
+ return_dict: bool = True,
413
+ controlnet_blocks_repeat: bool = False,
414
+ ) -> Union[torch.Tensor, Transformer2DModelOutput]:
415
+ if cond_hidden_states is not None:
416
+ use_condition = True
417
+ else:
418
+ use_condition = False
419
+
420
+ if joint_attention_kwargs is not None:
421
+ joint_attention_kwargs = joint_attention_kwargs.copy()
422
+ lora_scale = joint_attention_kwargs.pop("scale", 1.0)
423
+ else:
424
+ lora_scale = 1.0
425
+
426
+ if USE_PEFT_BACKEND:
427
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
428
+ scale_lora_layers(self, lora_scale)
429
+ else:
430
+ if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
431
+ logger.warning(
432
+ "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
433
+ )
434
+
435
+ hidden_states = self.x_embedder(hidden_states)
436
+ cond_hidden_states = self.x_embedder(cond_hidden_states)
437
+
438
+ timestep = timestep.to(hidden_states.dtype) * 1000
439
+ if guidance is not None:
440
+ guidance = guidance.to(hidden_states.dtype) * 1000
441
+ else:
442
+ guidance = None
443
+
444
+ temb = (
445
+ self.time_text_embed(timestep, pooled_projections)
446
+ if guidance is None
447
+ else self.time_text_embed(timestep, guidance, pooled_projections)
448
+ )
449
+
450
+ cond_temb = (
451
+ self.time_text_embed(torch.ones_like(timestep) * 0, pooled_projections)
452
+ if guidance is None
453
+ else self.time_text_embed(
454
+ torch.ones_like(timestep) * 0, guidance, pooled_projections
455
+ )
456
+ )
457
+
458
+ encoder_hidden_states = self.context_embedder(encoder_hidden_states)
459
+
460
+ if txt_ids.ndim == 3:
461
+ logger.warning(
462
+ "Passing `txt_ids` 3d torch.Tensor is deprecated."
463
+ "Please remove the batch dimension and pass it as a 2d torch Tensor"
464
+ )
465
+ txt_ids = txt_ids[0]
466
+ if img_ids.ndim == 3:
467
+ logger.warning(
468
+ "Passing `img_ids` 3d torch.Tensor is deprecated."
469
+ "Please remove the batch dimension and pass it as a 2d torch Tensor"
470
+ )
471
+ img_ids = img_ids[0]
472
+
473
+ ids = torch.cat((txt_ids, img_ids), dim=0)
474
+ image_rotary_emb = self.pos_embed(ids)
475
+
476
+ if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
477
+ ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
478
+ ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
479
+ joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
480
+
481
+ for index_block, block in enumerate(self.transformer_blocks):
482
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
483
+
484
+ def create_custom_forward(module, return_dict=None):
485
+ def custom_forward(*inputs):
486
+ if return_dict is not None:
487
+ return module(*inputs, return_dict=return_dict)
488
+ else:
489
+ return module(*inputs)
490
+
491
+ return custom_forward
492
+
493
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
494
+ encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
495
+ create_custom_forward(block),
496
+ hidden_states,
497
+ encoder_hidden_states,
498
+ temb,
499
+ image_rotary_emb,
500
+ cond_temb=cond_temb if use_condition else None,
501
+ cond_hidden_states=cond_hidden_states if use_condition else None,
502
+ **ckpt_kwargs,
503
+ )
504
+
505
+ else:
506
+ encoder_hidden_states, hidden_states, cond_hidden_states = block(
507
+ hidden_states=hidden_states,
508
+ encoder_hidden_states=encoder_hidden_states,
509
+ cond_hidden_states=cond_hidden_states if use_condition else None,
510
+ temb=temb,
511
+ cond_temb=cond_temb if use_condition else None,
512
+ image_rotary_emb=image_rotary_emb,
513
+ joint_attention_kwargs=joint_attention_kwargs,
514
+ )
515
+
516
+ # controlnet residual
517
+ if controlnet_block_samples is not None:
518
+ interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
519
+ interval_control = int(np.ceil(interval_control))
520
+ # For Xlabs ControlNet.
521
+ if controlnet_blocks_repeat:
522
+ hidden_states = (
523
+ hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
524
+ )
525
+ else:
526
+ hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
527
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
528
+
529
+ for index_block, block in enumerate(self.single_transformer_blocks):
530
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
531
+
532
+ def create_custom_forward(module, return_dict=None):
533
+ def custom_forward(*inputs):
534
+ if return_dict is not None:
535
+ return module(*inputs, return_dict=return_dict)
536
+ else:
537
+ return module(*inputs)
538
+
539
+ return custom_forward
540
+
541
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
542
+ hidden_states, cond_hidden_states = torch.utils.checkpoint.checkpoint(
543
+ create_custom_forward(block),
544
+ hidden_states,
545
+ temb,
546
+ image_rotary_emb,
547
+ cond_temb=cond_temb if use_condition else None,
548
+ cond_hidden_states=cond_hidden_states if use_condition else None,
549
+ **ckpt_kwargs,
550
+ )
551
+
552
+ else:
553
+ hidden_states, cond_hidden_states = block(
554
+ hidden_states=hidden_states,
555
+ cond_hidden_states=cond_hidden_states if use_condition else None,
556
+ temb=temb,
557
+ cond_temb=cond_temb if use_condition else None,
558
+ image_rotary_emb=image_rotary_emb,
559
+ joint_attention_kwargs=joint_attention_kwargs,
560
+ )
561
+
562
+ # controlnet residual
563
+ if controlnet_single_block_samples is not None:
564
+ interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
565
+ interval_control = int(np.ceil(interval_control))
566
+ hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
567
+ hidden_states[:, encoder_hidden_states.shape[1] :, ...]
568
+ + controlnet_single_block_samples[index_block // interval_control]
569
+ )
570
+
571
+ hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
572
+
573
+ hidden_states = self.norm_out(hidden_states, temb)
574
+ output = self.proj_out(hidden_states)
575
+
576
+ if USE_PEFT_BACKEND:
577
+ # remove `lora_scale` from each PEFT layer
578
+ unscale_lora_layers(self, lora_scale)
579
+
580
+ if not return_dict:
581
+ return (output,)
582
+
583
+ return Transformer2DModelOutput(sample=output)