jamiko commited on
Commit
60a481c
·
verified ·
1 Parent(s): e2c66ae

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +65 -0
  2. requirements.txt +64 -0
app.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ import random
4
+ from PIL import Image
5
+ from transformers import pipeline
6
+ import pandas as pd
7
+ import matplotlib.pyplot as plt
8
+
9
+
10
+ # Function to load a random image from a folder
11
+ def load_random_image(folder_path):
12
+ images = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
13
+ random_image_path = random.choice(images)
14
+ return Image.open(random_image_path)
15
+
16
+ # Path to your images folder
17
+ folder_path = 'data/'
18
+
19
+ # Streamlit app
20
+ st.title('Image Classifier - Real or Fake')
21
+
22
+ # Allow users to upload an image
23
+ uploaded_image = st.file_uploader("Upload an image for classification", type=["png", "jpg", "jpeg"])
24
+
25
+ # Create two columns
26
+ col1, col2 = st.columns(2)
27
+
28
+ # Display the uploaded image or a random image
29
+ if uploaded_image is not None:
30
+ image = Image.open(uploaded_image)
31
+ col1.image(image, caption='Uploaded Image', use_column_width=True)
32
+ else:
33
+ # Display a random image from the folder if no image is uploaded
34
+ if 'image_path' not in st.session_state or st.button('Load Random Image'):
35
+ st.session_state.image_path = load_random_image(folder_path)
36
+ col1.image(st.session_state.image_path, caption='Random Image', use_column_width=True)
37
+
38
+ # Classify button
39
+ if st.button('Classify'):
40
+ # This example uses a fixed classification result.
41
+ # You can replace this part with your actual model prediction logic.
42
+ pipe = pipeline("image-classification", model="dima806/deepfake_vs_real_image_detection")
43
+
44
+ if uploaded_image is not None:
45
+ classification_results = pipe(image)
46
+ else:
47
+ classification_results = pipe(st.session_state.image_path)
48
+
49
+
50
+ # Convert the classification results to a DataFrame
51
+ df_results = pd.DataFrame(classification_results)
52
+
53
+ # Plotting
54
+ fig, ax = plt.subplots()
55
+ ax.bar(df_results['label'], df_results['score'], color=['blue', 'orange'])
56
+ ax.set_ylabel('Scores')
57
+ ax.set_title('Classification Scores')
58
+ plt.tight_layout()
59
+
60
+ # Display the bar chart in Streamlit
61
+ col2.pyplot(fig)
62
+
63
+ # Load a new random image for next classification if no image is uploaded
64
+ if uploaded_image is None:
65
+ st.session_state.image_path = load_random_image(folder_path)
requirements.txt ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ -i https://pypi.org/simple
2
+ altair==5.2.0 ; python_version >= '3.8'
3
+ attrs==23.2.0 ; python_version >= '3.7'
4
+ blinker==1.7.0 ; python_version >= '3.8'
5
+ cachetools==5.3.3 ; python_version >= '3.7'
6
+ certifi==2024.2.2 ; python_version >= '3.6'
7
+ charset-normalizer==3.3.2 ; python_version >= '3.7'
8
+ click==8.1.7 ; python_version >= '3.7'
9
+ contourpy==1.2.0 ; python_version >= '3.9'
10
+ cycler==0.12.1 ; python_version >= '3.8'
11
+ filelock==3.13.1 ; python_version >= '3.8'
12
+ fonttools==4.49.0 ; python_version >= '3.8'
13
+ fsspec==2024.2.0 ; python_version >= '3.8'
14
+ gitdb==4.0.11 ; python_version >= '3.7'
15
+ gitpython==3.1.42 ; python_version >= '3.7'
16
+ huggingface-hub==0.21.2 ; python_version >= '3.8'
17
+ idna==3.6 ; python_version >= '3.5'
18
+ importlib-metadata==7.0.1 ; python_version >= '3.8'
19
+ jinja2==3.1.3 ; python_version >= '3.7'
20
+ jsonschema==4.21.1 ; python_version >= '3.8'
21
+ jsonschema-specifications==2023.12.1 ; python_version >= '3.8'
22
+ kiwisolver==1.4.5 ; python_version >= '3.7'
23
+ markdown-it-py==3.0.0 ; python_version >= '3.8'
24
+ markupsafe==2.1.5 ; python_version >= '3.7'
25
+ matplotlib==3.8.3
26
+ mdurl==0.1.2 ; python_version >= '3.7'
27
+ mpmath==1.3.0
28
+ networkx==3.2.1 ; python_version >= '3.9'
29
+ numpy==1.26.4 ; python_version >= '3.9'
30
+ packaging==23.2 ; python_version >= '3.7'
31
+ pandas==2.2.1 ; python_version >= '3.9'
32
+ pillow==10.2.0
33
+ protobuf==4.25.3 ; python_version >= '3.8'
34
+ pyarrow==15.0.0 ; python_version >= '3.8'
35
+ pydeck==0.8.1b0 ; python_version >= '3.7'
36
+ pygments==2.17.2 ; python_version >= '3.7'
37
+ pyparsing==3.1.1 ; python_full_version >= '3.6.8'
38
+ python-dateutil==2.8.2 ; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
39
+ pytz==2024.1
40
+ pyyaml==6.0.1 ; python_version >= '3.6'
41
+ referencing==0.33.0 ; python_version >= '3.8'
42
+ regex==2023.12.25 ; python_version >= '3.7'
43
+ requests==2.31.0 ; python_version >= '3.7'
44
+ rich==13.7.1 ; python_version >= '3.7'
45
+ rpds-py==0.18.0 ; python_version >= '3.8'
46
+ safetensors==0.4.2 ; python_version >= '3.7'
47
+ six==1.16.0 ; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
48
+ smmap==5.0.1 ; python_version >= '3.7'
49
+ streamlit==1.31.1
50
+ sympy==1.12 ; python_version >= '3.8'
51
+ tenacity==8.2.3 ; python_version >= '3.7'
52
+ tokenizers==0.15.2 ; python_version >= '3.7'
53
+ toml==0.10.2 ; python_version >= '2.6' and python_version not in '3.0, 3.1, 3.2, 3.3'
54
+ toolz==0.12.1 ; python_version >= '3.7'
55
+ torch==2.2.1
56
+ tornado==6.4 ; python_version >= '3.8'
57
+ tqdm==4.66.2 ; python_version >= '3.7'
58
+ transformers==4.38.1
59
+ typing-extensions==4.10.0 ; python_version >= '3.8'
60
+ tzdata==2024.1 ; python_version >= '2'
61
+ tzlocal==5.2 ; python_version >= '3.8'
62
+ urllib3==2.2.1 ; python_version >= '3.8'
63
+ validators==0.22.0 ; python_version >= '3.8'
64
+ zipp==3.17.0 ; python_version >= '3.8'