|
from PIL import Image |
|
|
|
import torch |
|
import torchvision.transforms as transforms |
|
|
|
def preprocess_img_from_path(path_to_image, img_size): |
|
img = Image.open(path_to_image) |
|
return preprocess_img(img, img_size) |
|
|
|
def preprocess_img(img: Image, img_size): |
|
original_size = img.size |
|
|
|
transform = transforms.Compose([ |
|
transforms.Resize((img_size, img_size)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
]) |
|
img = transform(img).unsqueeze(0) |
|
return img, original_size |
|
|
|
def postprocess_img(img, original_size): |
|
img = img.detach().cpu().squeeze(0) |
|
|
|
|
|
mean = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1) |
|
std = torch.tensor([0.229, 0.224, 0.225]).view(3, 1, 1) |
|
img = img * std + mean |
|
img = torch.clamp(img, 0, 1) |
|
|
|
img = transforms.ToPILImage()(img) |
|
img = img.resize(original_size, Image.Resampling.LANCZOS) |
|
return img |