Spaces:
Running
on
Zero
Running
on
Zero
bachvudinh
commited on
Commit
·
3c72012
1
Parent(s):
8e5d143
initial commit
Browse files- app.py +211 -0
- bad_examples/bad-What-is-Love.wav +0 -0
- examples/Can-you-write-a-registration-letter.wav +0 -0
- examples/Hello.wav +0 -0
- examples/Who-is-Harry-Potter.wav +0 -0
- examples/codeapythonscript.wav +0 -0
- examples/generate_3_questions_you_can_ask_an_interviewer.wav +0 -0
- examples/story.wav +0 -0
- examples/what-is-the-color-of-the-elephant.wav +0 -0
- examples/what-is-the-color-of-the-ocean.wav +0 -0
- generate_audio.py +87 -0
- requirements.txt +22 -0
- user_audio/0bf62a35-94bb-43f0-9a5f-9691c1691859_temp_audio.wav +0 -0
- whisper-vq-stoks-v3-7lang-fixed.model +3 -0
app.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import spaces
|
4 |
+
import torchaudio
|
5 |
+
from whisperspeech.vq_stoks import RQBottleneckTransformer
|
6 |
+
from encodec.utils import convert_audio
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
|
8 |
+
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
9 |
+
from threading import Thread
|
10 |
+
import logging
|
11 |
+
import os
|
12 |
+
from generate_audio import (
|
13 |
+
TTSProcessor,
|
14 |
+
)
|
15 |
+
import uuid
|
16 |
+
|
17 |
+
|
18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
vq_model = RQBottleneckTransformer.load_model(
|
20 |
+
"whisper-vq-stoks-v3-7lang-fixed.model"
|
21 |
+
).to(device)
|
22 |
+
# tts = TTSProcessor('cpu')
|
23 |
+
use_8bit = False
|
24 |
+
llm_path = "homebrewltd/Ichigo-llama3.1-s-instruct-v0.3-phase-3"
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(llm_path)
|
26 |
+
model_kwargs = {}
|
27 |
+
if use_8bit:
|
28 |
+
model_kwargs["quantization_config"] = BitsAndBytesConfig(
|
29 |
+
load_in_8bit=True,
|
30 |
+
llm_int8_enable_fp32_cpu_offload=False,
|
31 |
+
llm_int8_has_fp16_weight=False,
|
32 |
+
)
|
33 |
+
else:
|
34 |
+
model_kwargs["torch_dtype"] = torch.bfloat16
|
35 |
+
model = AutoModelForCausalLM.from_pretrained(llm_path, **model_kwargs).to(device)
|
36 |
+
|
37 |
+
@spaces.GPU
|
38 |
+
def audio_to_sound_tokens_whisperspeech(audio_path):
|
39 |
+
vq_model.ensure_whisper('cuda')
|
40 |
+
wav, sr = torchaudio.load(audio_path)
|
41 |
+
if sr != 16000:
|
42 |
+
wav = torchaudio.functional.resample(wav, sr, 16000)
|
43 |
+
with torch.no_grad():
|
44 |
+
codes = vq_model.encode_audio(wav.to(device))
|
45 |
+
codes = codes[0].cpu().tolist()
|
46 |
+
|
47 |
+
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
48 |
+
return f'<|sound_start|>{result}<|sound_end|>'
|
49 |
+
|
50 |
+
@spaces.GPU
|
51 |
+
def audio_to_sound_tokens_whisperspeech_transcribe(audio_path):
|
52 |
+
vq_model.ensure_whisper('cuda')
|
53 |
+
wav, sr = torchaudio.load(audio_path)
|
54 |
+
if sr != 16000:
|
55 |
+
wav = torchaudio.functional.resample(wav, sr, 16000)
|
56 |
+
with torch.no_grad():
|
57 |
+
codes = vq_model.encode_audio(wav.to(device))
|
58 |
+
codes = codes[0].cpu().tolist()
|
59 |
+
|
60 |
+
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
61 |
+
return f'Transcribe the speech in this audio sample:<|sound_start|>{result}<|sound_end|>'
|
62 |
+
# print(tokenizer.encode("<|sound_0001|>", add_special_tokens=False))# return the audio tensor
|
63 |
+
# print(tokenizer.eos_token)
|
64 |
+
|
65 |
+
@spaces.GPU
|
66 |
+
def text_to_audio_file(text):
|
67 |
+
# gen a random id for the audio file
|
68 |
+
id = str(uuid.uuid4())
|
69 |
+
temp_file = f"./user_audio/{id}_temp_audio.wav"
|
70 |
+
text = text
|
71 |
+
text_split = "_".join(text.lower().split(" "))
|
72 |
+
# remove the last character if it is a period
|
73 |
+
if text_split[-1] == ".":
|
74 |
+
text_split = text_split[:-1]
|
75 |
+
tts = TTSProcessor("cuda")
|
76 |
+
tts.convert_text_to_audio_file(text, temp_file)
|
77 |
+
# logging.info(f"Saving audio to {temp_file}")
|
78 |
+
# torchaudio.save(temp_file, audio.cpu(), sample_rate=24000)
|
79 |
+
print(f"Saved audio to {temp_file}")
|
80 |
+
return temp_file
|
81 |
+
|
82 |
+
|
83 |
+
@spaces.GPU
|
84 |
+
def process_input(audio_file=None):
|
85 |
+
|
86 |
+
for partial_message in process_audio(audio_file):
|
87 |
+
yield partial_message
|
88 |
+
|
89 |
+
|
90 |
+
@spaces.GPU
|
91 |
+
def process_transcribe_input(audio_file=None):
|
92 |
+
|
93 |
+
for partial_message in process_audio(audio_file, transcript=True):
|
94 |
+
yield partial_message
|
95 |
+
|
96 |
+
class StopOnTokens(StoppingCriteria):
|
97 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
98 |
+
# encode </s> token
|
99 |
+
stop_ids = [tokenizer.eos_token_id, 128009] # Adjust this based on your model's tokenizer
|
100 |
+
for stop_id in stop_ids:
|
101 |
+
if input_ids[0][-1] == stop_id:
|
102 |
+
return True
|
103 |
+
return False
|
104 |
+
|
105 |
+
@spaces.GPU
|
106 |
+
def process_audio(audio_file, transcript=False):
|
107 |
+
if audio_file is None:
|
108 |
+
raise ValueError("No audio file provided")
|
109 |
+
|
110 |
+
logging.info(f"Audio file received: {audio_file}")
|
111 |
+
logging.info(f"Audio file type: {type(audio_file)}")
|
112 |
+
|
113 |
+
sound_tokens = audio_to_sound_tokens_whisperspeech_transcribe(audio_file) if transcript else audio_to_sound_tokens_whisperspeech(audio_file)
|
114 |
+
logging.info("Sound tokens generated successfully")
|
115 |
+
# logging.info(f"audio_file: {audio_file.name}")
|
116 |
+
messages = [
|
117 |
+
{"role": "user", "content": sound_tokens},
|
118 |
+
]
|
119 |
+
|
120 |
+
stop = StopOnTokens()
|
121 |
+
input_str = tokenizer.apply_chat_template(messages, tokenize=False)
|
122 |
+
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
123 |
+
input_ids = input_ids.to(model.device)
|
124 |
+
|
125 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
126 |
+
generation_kwargs = dict(
|
127 |
+
input_ids=input_ids,
|
128 |
+
streamer=streamer,
|
129 |
+
max_new_tokens=1024,
|
130 |
+
do_sample=False,
|
131 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
132 |
+
)
|
133 |
+
|
134 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
135 |
+
thread.start()
|
136 |
+
|
137 |
+
partial_message = ""
|
138 |
+
for new_token in streamer:
|
139 |
+
partial_message += new_token
|
140 |
+
if tokenizer.eos_token in partial_message:
|
141 |
+
break
|
142 |
+
partial_message = partial_message.replace("assistant\n\n", "")
|
143 |
+
yield partial_message
|
144 |
+
# def stop_generation():
|
145 |
+
# # This is a placeholder. Implement actual stopping logic here if needed.
|
146 |
+
# return "Generation stopped.", gr.Button.update(interactive=False)
|
147 |
+
# take all the examples from the examples folder
|
148 |
+
good_examples = []
|
149 |
+
for file in os.listdir("./examples"):
|
150 |
+
if file.endswith(".wav"):
|
151 |
+
good_examples.append([f"./examples/{file}"])
|
152 |
+
bad_examples = []
|
153 |
+
for file in os.listdir("./bad_examples"):
|
154 |
+
if file.endswith(".wav"):
|
155 |
+
bad_examples.append([f"./bad_examples/{file}"])
|
156 |
+
examples = []
|
157 |
+
examples.extend(good_examples)
|
158 |
+
examples.extend(bad_examples)
|
159 |
+
with gr.Blocks() as iface:
|
160 |
+
gr.Markdown("# Ichigo-llama3-s: Llama3.1 with listening capabilities")
|
161 |
+
gr.Markdown("Record your voice or upload audio and send it to the model.")
|
162 |
+
gr.Markdown("Powered by [Homebrew Ltd](https://homebrew.ltd/) | [Read our blog post](https://homebrew.ltd/blog/llama3-just-got-ears)")
|
163 |
+
|
164 |
+
with gr.Row():
|
165 |
+
input_type = gr.Radio(["text", "audio"], label="Input Type", value="audio")
|
166 |
+
text_input = gr.Textbox(label="Send", visible=False)
|
167 |
+
audio_input = gr.Audio(label="Audio", type="filepath", visible=True)
|
168 |
+
# audio_output = gr.Audio(label="Converted Audio", type="filepath", visible=False)
|
169 |
+
|
170 |
+
convert_button = gr.Button("Convert to Audio", visible=False)
|
171 |
+
submit_button = gr.Button("Send")
|
172 |
+
# transcrip_button = gr.Button("Make Model Transcribe the audio")
|
173 |
+
|
174 |
+
text_output = gr.Textbox(label="Generated Text")
|
175 |
+
|
176 |
+
def update_visibility(input_type):
|
177 |
+
return (gr.update(visible=input_type == "text"),
|
178 |
+
gr.update(visible=input_type == "text"))
|
179 |
+
def convert_and_display(text):
|
180 |
+
audio_file = text_to_audio_file(text)
|
181 |
+
return audio_file
|
182 |
+
def process_example(file_path):
|
183 |
+
return update_visibility("audio")
|
184 |
+
input_type.change(
|
185 |
+
update_visibility,
|
186 |
+
inputs=[input_type],
|
187 |
+
outputs=[text_input, convert_button]
|
188 |
+
)
|
189 |
+
|
190 |
+
convert_button.click(
|
191 |
+
convert_and_display,
|
192 |
+
inputs=[text_input],
|
193 |
+
outputs=[audio_input]
|
194 |
+
)
|
195 |
+
|
196 |
+
submit_button.click(
|
197 |
+
process_input,
|
198 |
+
inputs=[audio_input],
|
199 |
+
outputs=[text_output]
|
200 |
+
)
|
201 |
+
# transcrip_button.click(
|
202 |
+
# process_transcribe_input,
|
203 |
+
# inputs=[audio_input],
|
204 |
+
# outputs=[text_output]
|
205 |
+
# )
|
206 |
+
|
207 |
+
gr.Examples(examples, inputs=[audio_input])
|
208 |
+
iface.queue()
|
209 |
+
iface.launch()
|
210 |
+
# launch locally
|
211 |
+
# iface.launch(server_name="0.0.0.0")
|
bad_examples/bad-What-is-Love.wav
ADDED
Binary file (41.7 kB). View file
|
|
examples/Can-you-write-a-registration-letter.wav
ADDED
Binary file (109 kB). View file
|
|
examples/Hello.wav
ADDED
Binary file (18.6 kB). View file
|
|
examples/Who-is-Harry-Potter.wav
ADDED
Binary file (62.8 kB). View file
|
|
examples/codeapythonscript.wav
ADDED
Binary file (61 kB). View file
|
|
examples/generate_3_questions_you_can_ask_an_interviewer.wav
ADDED
Binary file (302 kB). View file
|
|
examples/story.wav
ADDED
Binary file (41.5 kB). View file
|
|
examples/what-is-the-color-of-the-elephant.wav
ADDED
Binary file (107 kB). View file
|
|
examples/what-is-the-color-of-the-ocean.wav
ADDED
Binary file (97.4 kB). View file
|
|
generate_audio.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torchaudio
|
2 |
+
|
3 |
+
from whisperspeech.pipeline import Pipeline
|
4 |
+
import argparse
|
5 |
+
|
6 |
+
def parse_args():
|
7 |
+
parser = argparse.ArgumentParser(description="Convert text to audio.")
|
8 |
+
parser.add_argument(
|
9 |
+
"--text",
|
10 |
+
type=str,
|
11 |
+
required=True,
|
12 |
+
help="The text to convert to audio.",
|
13 |
+
)
|
14 |
+
return parser.parse_args()
|
15 |
+
|
16 |
+
def convert_text_to_audio(pipe: Pipeline, text: str):
|
17 |
+
"""Convert text to audio.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
pipe (Pipeline): The pipeline to use for text-to-speech.
|
21 |
+
text (str): The text to convert to audio.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
torch.Tensor: The generated audio.
|
25 |
+
"""
|
26 |
+
return pipe.generate(text)
|
27 |
+
|
28 |
+
|
29 |
+
def convert_text_to_audio_file(pipe: Pipeline, text: str, output_path: str):
|
30 |
+
"""Convert text to audio and save it to a file.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
pipe (Pipeline): The pipeline to use for text-to-speech.
|
34 |
+
text (str): The text to convert to audio.
|
35 |
+
output_path (str): The path to save the audio file.
|
36 |
+
"""
|
37 |
+
pipe.generate_to_file(output_path, text)
|
38 |
+
|
39 |
+
|
40 |
+
class TTSProcessor:
|
41 |
+
def __init__(self, device: str):
|
42 |
+
"""Initialize the TTS Processor with a specified device."""
|
43 |
+
self.pipe = Pipeline(
|
44 |
+
s2a_ref="collabora/whisperspeech:s2a-q4-tiny-en+pl.model", device=device
|
45 |
+
)
|
46 |
+
|
47 |
+
def get_reference_voice_embedding(self, path: str):
|
48 |
+
"""Get the reference voice embedding from the given audio file.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
path (str): The path to the audio file.
|
52 |
+
Returns:
|
53 |
+
torch.Tensor: The reference voice embedding."""
|
54 |
+
return self.pipe.extract_spk_emb(path).cpu()
|
55 |
+
|
56 |
+
def convert_text_to_audio(self, text: str, speaker=None):
|
57 |
+
"""Convert text to audio.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
text (str): The text to convert to audio.
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
torch.Tensor: The generated audio.
|
64 |
+
"""
|
65 |
+
return self.pipe.generate(text, speaker=speaker)
|
66 |
+
|
67 |
+
def convert_text_to_audio_file(self, text: str, output_path: str, speaker=None):
|
68 |
+
"""Convert text to audio and save it to a file.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
text (str): The text to convert to audio.
|
72 |
+
output_path (str): The path to save the audio file.
|
73 |
+
"""
|
74 |
+
self.pipe.generate_to_file(output_path, text, speaker=speaker)
|
75 |
+
if __name__ == "__main__":
|
76 |
+
args = parse_args()
|
77 |
+
processor = TTSProcessor("cuda")
|
78 |
+
text = args.text
|
79 |
+
text = text.lower()
|
80 |
+
text_split = "_".join(text.lower().split(" "))
|
81 |
+
# remove the last character if it is a period
|
82 |
+
if text_split[-1] == ".":
|
83 |
+
text_split = text_split[:-1]
|
84 |
+
print(text_split)
|
85 |
+
path = f"./examples/{text_split}.wav"
|
86 |
+
processor.convert_text_to_audio_file(text, path)
|
87 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai-whisper==20231117
|
2 |
+
IPython
|
3 |
+
peft
|
4 |
+
huggingface_hub
|
5 |
+
matplotlib
|
6 |
+
pyarrow
|
7 |
+
datasets
|
8 |
+
encodec
|
9 |
+
soundfile
|
10 |
+
gradio==4.39.0
|
11 |
+
transformers
|
12 |
+
bitsandbytes
|
13 |
+
torchvision
|
14 |
+
vector_quantize_pytorch
|
15 |
+
webdataset
|
16 |
+
whisperspeech
|
17 |
+
--extra-index-url https://download.pytorch.org/whl/cu121
|
18 |
+
torch==2.2.0
|
19 |
+
torchaudio==2.2.0
|
20 |
+
fsspec==2024.6.1
|
21 |
+
anyio==4.4.0
|
22 |
+
numpy==1.26.4
|
user_audio/0bf62a35-94bb-43f0-9a5f-9691c1691859_temp_audio.wav
ADDED
Binary file (147 kB). View file
|
|
whisper-vq-stoks-v3-7lang-fixed.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09e23368136f07ba474dd50fd728f1d216f4542550c456e8065855969b1df730
|
3 |
+
size 90921877
|