import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline import torch model_checkpoint = "japanese-denim/m2m-finetuned-naga-to-eng" model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) def translate(text): translation_pipeline = pipeline("translation", model=model, tokenizer = tokenizer, src_lang='en', tgt_lang='en') result = translation_pipeline(text) return result[0]['translation_text'] gr.Interface( translate, [ gr.components.Textbox(label="input", placeholder = "Enter Nagamese sentence here") ], ["text"], ).launch()